Spectacles, Eugene, and Kepler
Managing Synthetic Biology Device Development
Lesia Bilitchenko, Joanna Chen, Adam Liu, Richard Mar, Thien Nguyen, Nina Revko, Bing Xia
Berkeley Software, iGEM 2009, MIT, November 1, 2009

Project Motivation
Teams are making **MORE** parts! Berkeley iGEM 2009 Wetlab made over 800 parts this summer!!!

Project Motivation

Clotho Infrastructure

Tool-to-tool Interaction

Tool-to-database Interaction

Reconfigurable Data Model
Design Flow Example

Clotho Core API
Revamped Clotho Core and Data Model

Abstract design

Device Specification

Physical Assembly

Eugene

Kepler

Spectacles

Abstract Design

Eugene

Clotho - Sequence View - Algorithm Manager

Choose a part
Modify name, sequence, or implementation
Map to physical part in database
Export to Eugene

Tool API
Realize an abstract design from Spectacles:

- **<part declarations>**
 - Specify instances of physical parts

- **<rule declarations>**
 - Specify rules on how parts can interact with each other on devices

- **<device declarations>**
 - Construct devices while enforcing rules

- **<function calls on devices>**
 - Perform functions on devices

Diagram:

- Eugene Compiler ➔ XML ➔ Tool X ➔ XML To Eugene Header Tool ➔ Eugene Header Files ➔ Database Of Parts ➔ XML.
Physical Assembly

Clotho

Files for robot

Human Instructions
1. Dilution file for robot
2. Reaction file for robot
3. File with human-readable instructions

Stage 1 Processing

Stock Plate

Buffer pre-filled
Assignments to wells

Reaction Plate

+ Digestion Mix
+ Ligation Mix
Workflow design environment

- Visual
- Extensible

Director: controls the execution of actors

Actor: a process step in the workflow

Kepler

Kepler Demo
Conclusions

• Abstract device development, device specification, and physical assembly are key activities in Synthetic Biology.
• Developed Spectacles, Eugene, and Kepler based software tools on top of a revamped Clotho framework.
• Demonstrated the usefulness of these tools as a continued effort toward a complete design flow for Synthetic Biological Systems.
• Collaborated with other institutions
 • Stanford, U Minnesota, SynBERC

Thanks

UC Berkeley 2009 “Wet team”
In particular Sherine Cheung and Jenn Brophy

J. Christopher Anderson Lab
Josh Kittleson, Tim Hsiau

SynBERC and QB3
Kate Spohr, Kevin Costa, Leonard Katz

CHESS
Christopher Brooks, Edward Lee

Marlee Tishenot, Christine Tsin, Evan Yang, Nade Sritanyaratana, Armen Khodaverdian

For more info be sure to stop by our poster and get a demo!

Also be sure to check out:
- http://sourceforge.net/projects/keplerclotho/