Red Fluorescent Nitrate Detector

Gaston Day School iGEM Team
Red Fluorescent Nitrate Detector

- The Team
- The Project
- The Problem
- The Process
- The Lab
- The Plans
The Team

• **Seniors**
 – Sheran Hussain
 – William Farmer
 – Ryan Kane
 – Brian Elgort
 – Lauren Toole

• **Juniors**
 – Al Hall
 – Daniel Thompson
 – Will Rudisill

• **Sophomores**
 – Rosemary Dunning
 – Ivana Chan
 – Amir Feinburg

Advisor
• Ms. Byford
Nitrates in North Carolina

- Sources of Nitrate pollution
 - Mechanized farming
 - Fertilizer use and run-off
 - Livestock waste
 - Leaking lagoons
 - Human waste
 - Septic tanks or defective sewage systems
 - Urban areas
 - Combustion engines

- Approximately 5,240,569 North Carolinians drank nitrate-polluted water in 1997-2003
Nitrate Dangers

• Animal effects
 – Most dangerous in ruminants (cows and sheep)
 – Labored breathing
 – Vomiting
 – Still births
 – Death
Nitrate Dangers

• Human effects
 – Spontaneous abortion
 – Cancers resulting from chronic consumption
 – Methemoglobinemia or “Blue baby syndrome”
The Metabolism of Nitrates

NO_3^-

Fe^{2+}
The Project

• Biological Nitrate Detector
 – Nitrate sensitive promoter linked to Red Fluorescent Protein reporter

• Relatively easy to detect and quantitate

• Cost-effective alternative method

• Self-replicating
What Happens with the E. coli
The Process

• Combine nitrate sensitive promoter with RFP to produce *E. coli* that turn red in the presence of high nitrate levels

• pNICE with nitrate sensitive promoter (*narG*) donated by Dr. Steven Lindow at UC Berkeley

• RFP from BioBrick collection
narG/L28H-fnr Promoter

- **narG promoter**
 - Regulates nitrate reductase gene in *E. coli*
 - Expression only under anaerobic conditions
 - Secondary regulation by transcription factor *fnr*

- **L28H-fnr**
 - Mutant *fnr* provided to allow aerobic expression of *narG* promoter
What We Wanted to Do

Diagram:

- RFP
- inaz
- Fnr Narg
- B
- E
- X
- N
- S
- P
- N
Actual Initial Construction

- Map of *narG/L28H-fnr*

- Cut with BamHI/EcoRI
- Cut RFP BioBrick vector with EcoRI/PstI
- Ligate into pUC19
- Later steps to convert to BioBrick standard
The Lab

Gaston Day School iGEM lab
Centrifuge

- Clinical centrifuge vs. lab centrifuge
Creating Our UV Light Box

• Could not purchase a professionally-made UV light box
 – Necessity for Ethidium Bromide gels
• Constructed our own UV light box.
• Built from:
 – A donated, old art light box (11 ¾ inch bulbs)
 – An 8 inch UV bulb.
 – A soldering iron
 – A roll of tape
 – A few hours work
iGEM in the High School

• Most high schools unaffiliated with university or hospital
 – Necessary equipment may not be on hand
 • -80°C freezer, PCR machine, adjustable spectrophotometer, autoclave
• Work space shared with classroom space
• Initial level of knowledge is much less
• Enthusiasm may be greater!
• No stipends to pay – team members live at home
 – Significantly reduces cost of project
The Plans

• Begin before the end of this school year
 – Create fliers and posters to generate interest around school
 – Go around the community, looking for donations and funds

• Produce a summer schedule
 – Outline each member’s position and job
 – Identify when they will be working
The Goals

• Continue this year’s project
• Produce $fnrL28H-narG$ BioBrick
• Produce functional Red Fluorescent Nitrate Detector BioBrick
• Establish GDS team as annual competitors
 – Possibly in conjunction with research class
• Be a resource for other high schools interested in competing
Individual Sponsors

• Gold Level
 – Hussain Family
 – Scott Olson
 – Suzanne and Bill Duncan

• Silver Level
 – Farrah Bui
 – Bill and Audrey Page
 – Wendy Philbeck
 – Jim Green
 – Jennifer Newcombe
 – Pat and Martin Curd
 – Martha S. Curry
 – Billie Jean Birtchett
 – Bruce and Betsy Byford
 – Trudy A. Johnson
Corporate Sponsors