

iGEM 2009 Tutorial Modeling

What?

Model

A model in science is a simplified physical, mathematical, or logical representation of a system of entities, phenomena, or processes.

Simulation

A simulation is the implementation of a model over time. A simulation brings a model to life and shows how a particular object or phenomenon will behave. It is useful for testing, analysis or training where real-world systems or concepts can be represented by a model.

Modeling

Modeling refers to the process of generating a model as a conceptual representation of some phenomena.

Why?

- Reduction of experiment costs
- Simulations are much faster → number of experiments increase
- No danger!
- BUT simulations represent only part of the real world!
- Models are a simplification of the real world

Models

• Black box:

Input-output model, no knowledge about how the system works.

Transferfunction: no relation with physics

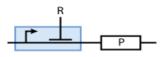
• White box:

Absolute knowledge about how the system works.

Takes physics into account

Example: Chemical Reactor

White box	Black box
Model based on reaction equations	Model based on input- output data (e.g. ARX, neural network,)


We will work with white box models

ordinary differential equations (ODE's)

Example: Model described :
$$A \xrightarrow{k_1} B$$

• Kinetic Law for 'A': $\frac{d[A]}{dt} = -k_1[A]; [A]_{t=0} = A_0 > 0$
• Kinetic Law for 'B': $\frac{d[B]}{dt} = k_1[A]; [B]_{t=0} = 0$

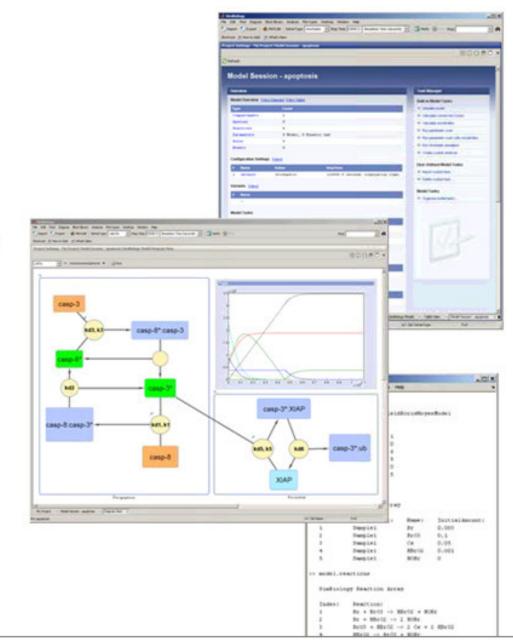
Example: Regulated protein production

$$[DNA] + n[R] \xrightarrow{k_R} [DNA \cdot nR]$$

inhibition

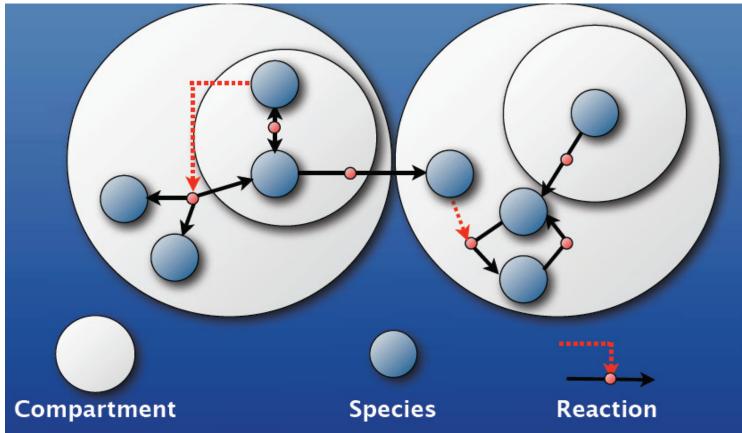
$$k_R[\text{DNA}][\text{R}]^n = k_{-R}[\text{DNA} \cdot n\text{R}]$$

$$[\text{DNA}] \sim \frac{1}{1 + \left(\frac{[\text{R}]}{K_R}\right)^n}$$


$$\frac{d[P]}{dt} = c^{\max} \frac{1}{1 + \left(\frac{[R]}{K_R}\right)^n} - d_P[P]$$

Matlab

- How to model and simulate in Matlab:
 - Basic: m-files
 - Advanced: Simulink
 - Specific: SimBiology toolbox
- Alternative: CellDesigner


SimBiology®

- A computational tool for modeling, simulating, and analyzing biological systems
- Provides both a powerful mathematical engine as well as an graphical interface to enable use by all types of researchers
- Built on MATLAB[®], which provides extensibility and flexibility

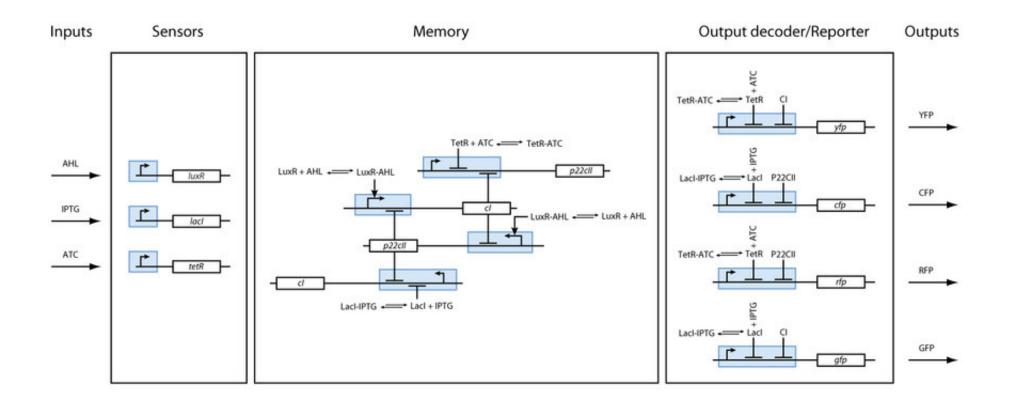
Systems Biology Markup Language (SBML)

 You can create your own block diagram model using predefined blocks. You can manually edit compartments, species, parameters, reactions, events, rules, kinetic laws, and units.

iGEM-modeling

Role of modeling

Important is the interaction between modeling and experiments: modeling is not a precursor phase of experiment and synthesis, it is part of the design cycle.


Detailed Model

Detailed model of all interactions in the system: define desired behaviour + formalized description of system → identify necessary biological components & interactions

Parameter estimation & sensitivity analysis

- Most difficult and laborious part of modeling
- Most parameters unknown
- Solution: sensitivity analysis
- Which parameters have effect on which states ?

ETH Zürich 2007 Final Design

Mathematical Model

The model is given by sets of coupled ordinary differential equations solved with matlab

Simulation & Sensitivity Analysis

Questions