Team:Tsinghua/Design

From 2009.igem.org

(Difference between revisions)
(New page: === Introduction === Although several successive gene therapeutic approaches have been reported[1,2], an ideal gene delivery system with targeted specificity, high efficiency and safety is...)
Line 1: Line 1:
-
=== Introduction ===
+
=Introduction =
Although several successive gene therapeutic approaches have been reported[1,2], an ideal gene delivery system with targeted specificity, high efficiency and safety is still not available[1,3,4]. Generally speaking, these factors to a large extent depend on the gene therapy vectors used[5]. In other words, the gene delivery system is still a bottleneck as well as a universal problem in the practical fields of gene therapy.
Although several successive gene therapeutic approaches have been reported[1,2], an ideal gene delivery system with targeted specificity, high efficiency and safety is still not available[1,3,4]. Generally speaking, these factors to a large extent depend on the gene therapy vectors used[5]. In other words, the gene delivery system is still a bottleneck as well as a universal problem in the practical fields of gene therapy.
Line 8: Line 8:
Generally, we have two sub-projects. One is the synthetic biology approach in simulation with the established viral vectors. However, the synthetic gene therapy vector will not be as cytotoxic as the commonly applied viral vectors. The other is the synthetic biology approach on the basis of naked plasmid vectors, while the efficiency and specificity of the gene therapy vector can be ensured by synthetic biology modification. The two sub-projects are interconnected in that the flexible synthetic domains of the key proteins are truly interchangeable.
Generally, we have two sub-projects. One is the synthetic biology approach in simulation with the established viral vectors. However, the synthetic gene therapy vector will not be as cytotoxic as the commonly applied viral vectors. The other is the synthetic biology approach on the basis of naked plasmid vectors, while the efficiency and specificity of the gene therapy vector can be ensured by synthetic biology modification. The two sub-projects are interconnected in that the flexible synthetic domains of the key proteins are truly interchangeable.
-
===Project1===
+
=Project1=
-
==== Basic Idea ====
+
==Basic Idea ==
Project1 is aimed at synthesizing a gene therapy vector which is structurally and functionally similar to a commonly used viral vector termed adenovirus vector[6]. However, in order to achieve the synthetic biology standard for human practice in the realm of gene therapy, this gene therapy vector should be industrially easy to manipulate in its production and genetically easy to modify in its specificity. Also, based on the social implication of synthetic biology[7,8], the synthetic gene therapy vector must be safe for possible clinical use.
Project1 is aimed at synthesizing a gene therapy vector which is structurally and functionally similar to a commonly used viral vector termed adenovirus vector[6]. However, in order to achieve the synthetic biology standard for human practice in the realm of gene therapy, this gene therapy vector should be industrially easy to manipulate in its production and genetically easy to modify in its specificity. Also, based on the social implication of synthetic biology[7,8], the synthetic gene therapy vector must be safe for possible clinical use.
Line 21: Line 21:
Our Project1 is equivalent to apply synthetic biology concepts and standards at the genomic level, constructing a genome which is neither adenovirus nor bacteriophage lambda genome. This synthetic genome, however, is capable of producing standardized and targeted gene therapy vectors for human clinical practice. Also, we use the abstraction principle in our design of this genome in order to make the synthetic gene therapy vector easy to be further modified, improved and industrialized. Project1 implicates the evolvement of synthetic biology to a higher level of living organism, the genome, which meets the trends of synthetic biology innovation.
Our Project1 is equivalent to apply synthetic biology concepts and standards at the genomic level, constructing a genome which is neither adenovirus nor bacteriophage lambda genome. This synthetic genome, however, is capable of producing standardized and targeted gene therapy vectors for human clinical practice. Also, we use the abstraction principle in our design of this genome in order to make the synthetic gene therapy vector easy to be further modified, improved and industrialized. Project1 implicates the evolvement of synthetic biology to a higher level of living organism, the genome, which meets the trends of synthetic biology innovation.
-
==== Synthesis of the Gene Therapy Production System====
+
== Synthesis of the Gene Therapy Production System==
Based on the standard of synthetic biology, we apply two approaches to synthesize the genome of our gene therapy vector
Based on the standard of synthetic biology, we apply two approaches to synthesize the genome of our gene therapy vector
[[Image:lambda genome.png|right]]
[[Image:lambda genome.png|right]]
[[Image:adenovirus genome.png|right]]
[[Image:adenovirus genome.png|right]]
-
===== Bottom-Up Approach =====
+
=== Bottom-Up Approach ===
As for the bottom-up approach, we amplify the target genes from the target genome(mostly structural genes from lambda phage genome, and also L5 (fiber) gene from adenovirus genome) and recombine them into one or two molecular cloning vectors according to the biobrick standard. In the synthetic genome of the gene therapy vector, gene C (which encodes the protein at the vertices of the lambda viroin) and L5 should be fused according to certain standardiztion consideration (termed targeted biobrick).In front of the encoding region bacteriophage lambda strucural proteins and the targeted biobrick, a T7 promoter (from iGEM parts) will be inserted for IPTG-inducible control.
As for the bottom-up approach, we amplify the target genes from the target genome(mostly structural genes from lambda phage genome, and also L5 (fiber) gene from adenovirus genome) and recombine them into one or two molecular cloning vectors according to the biobrick standard. In the synthetic genome of the gene therapy vector, gene C (which encodes the protein at the vertices of the lambda viroin) and L5 should be fused according to certain standardiztion consideration (termed targeted biobrick).In front of the encoding region bacteriophage lambda strucural proteins and the targeted biobrick, a T7 promoter (from iGEM parts) will be inserted for IPTG-inducible control.
-
===== Top-Down Approach=====
+
=== Top-Down Approach===
As for the top-down approach, we transplant the whole gene expression element under the upsteam regulation of promoter R' into a molecular cloning vector. Fortunately, the lambda promoter R' can be strongly enhanced by protein Q in the late state of wildtype phage infection, which makes a feasible scheme to regulate the structural proteins on the synthetic genome.In front of the encoding region of protein Q, a T7 promoter (from iGEM parts) will be inserted for IPTG-inducible control.
As for the top-down approach, we transplant the whole gene expression element under the upsteam regulation of promoter R' into a molecular cloning vector. Fortunately, the lambda promoter R' can be strongly enhanced by protein Q in the late state of wildtype phage infection, which makes a feasible scheme to regulate the structural proteins on the synthetic genome.In front of the encoding region of protein Q, a T7 promoter (from iGEM parts) will be inserted for IPTG-inducible control.
-
====Synthesis of the Targeted Biobrick====
+
==Synthesis of the Targeted Biobrick==
The synthesized genome will be capable of producing gene therapy "viroins" with protein C specially modified. This targeted biobrick enables the synthetic gene therapy vector to be targeted specifically for certain types of cells. We generally decouple this biobrick into four "modules" (will be expressed to different domains in the C-Fiber fusion protein).
The synthesized genome will be capable of producing gene therapy "viroins" with protein C specially modified. This targeted biobrick enables the synthetic gene therapy vector to be targeted specifically for certain types of cells. We generally decouple this biobrick into four "modules" (will be expressed to different domains in the C-Fiber fusion protein).
[[Image:project1-design.png|right]]
[[Image:project1-design.png|right]]
-
====Synthesis of the Therapeutic DNA====
+
==Synthesis of the Therapeutic DNA==
Here we introduce another molecular cloning vector to mimic the bacteriophage lambda genome which will be packaged into the viroin. However, the synthetic “bacteriophage lambda genome” contains the therapeutic gene(s) needed by the target cells, which will be transported via stimulated viral introduction.
Here we introduce another molecular cloning vector to mimic the bacteriophage lambda genome which will be packaged into the viroin. However, the synthetic “bacteriophage lambda genome” contains the therapeutic gene(s) needed by the target cells, which will be transported via stimulated viral introduction.
We term this molecular cloning vector “Therapeutic DNA”, which consists of a cos site for the package into the viroin of targeted gene therapy vector, the therapeutic gene(s) for in vivo gene therapy and the replication origin of bacteriophage lambda (including O gene and P gene).
We term this molecular cloning vector “Therapeutic DNA”, which consists of a cos site for the package into the viroin of targeted gene therapy vector, the therapeutic gene(s) for in vivo gene therapy and the replication origin of bacteriophage lambda (including O gene and P gene).
-
====Production of the targeted gene therapy vector====
+
==Production of the targeted gene therapy vector==
After the construction of the synthetic genome and the Therapeutic DNA which are carried by two molecular cloning vectors(they will carry different origins of DNA replication), we will cotransform them into the E.coli for the production of the targeted gene therapy vector.
After the construction of the synthetic genome and the Therapeutic DNA which are carried by two molecular cloning vectors(they will carry different origins of DNA replication), we will cotransform them into the E.coli for the production of the targeted gene therapy vector.
Line 48: Line 48:
Given appropriate time for enough package yields(evaluated by modeling), the E.coli for production will be lysated manually or inducibly. Then the gene therapy vectors can be isolated and enriched by established protocol of viroin purification.
Given appropriate time for enough package yields(evaluated by modeling), the E.coli for production will be lysated manually or inducibly. Then the gene therapy vectors can be isolated and enriched by established protocol of viroin purification.
-
====Functioning of the targeted gene therapy vector====
+
==Functioning of the targeted gene therapy vector==
An idealized model for the functioning of the targeted gene therapy vector is proposed. After the injection of the purified gene therapy vectors, the vectors will conveyed to target cells by circulation (specific situations should be discussed with respect to different types of cells and different diseases). The synthetic vectors will invade into the target cells in a manner similiar to the wildtype adenovirus-attachment and internalization. This function is empowered by the targeted biobrick in the synthetic genome.
An idealized model for the functioning of the targeted gene therapy vector is proposed. After the injection of the purified gene therapy vectors, the vectors will conveyed to target cells by circulation (specific situations should be discussed with respect to different types of cells and different diseases). The synthetic vectors will invade into the target cells in a manner similiar to the wildtype adenovirus-attachment and internalization. This function is empowered by the targeted biobrick in the synthetic genome.
Firstly, the tissue-specific peptide (selected by phage display) on the surface of the viroin will attach to the receptors on the surface of the target cells. Secondly, the RGD domian at the bottom of the engineered fiber will interact with integrin of the targeted cells, thus internalize the whole viroin by endocytosis.
Firstly, the tissue-specific peptide (selected by phage display) on the surface of the viroin will attach to the receptors on the surface of the target cells. Secondly, the RGD domian at the bottom of the engineered fiber will interact with integrin of the targeted cells, thus internalize the whole viroin by endocytosis.
-
===Project2===
+
=Project2=
-
====Basic Idea====
+
==Basic Idea==
-
====Function of the System====
+
==Function of the System==
-
===Innovation of our Project===
+
=Innovation of our Project=
-
=== References(Project1) ===
+
= References(Project1) =
[1] David A.Williams, and Christopher Baum. Gene Therapy—New Challenges Ahead. Science. 2003, 302, 400-401.
[1] David A.Williams, and Christopher Baum. Gene Therapy—New Challenges Ahead. Science. 2003, 302, 400-401.

Revision as of 17:36, 14 August 2009

Contents

Introduction

Although several successive gene therapeutic approaches have been reported[1,2], an ideal gene delivery system with targeted specificity, high efficiency and safety is still not available[1,3,4]. Generally speaking, these factors to a large extent depend on the gene therapy vectors used[5]. In other words, the gene delivery system is still a bottleneck as well as a universal problem in the practical fields of gene therapy.


Our project is aimed at applying the ideas of synthetic biology at the genomic level and building a targeted gene therapy vector that can be applied with respect to the certain need of specificity. Also, we intend to propose a procedure for selecting certain synthetic gene vectors with specificity of one’s interest based our design gene therapy vectors. Mathematic modeling focus on both the synthesis of the targeted gene therapy vectors as well as the evaluation of the specificity selection procedure.


Generally, we have two sub-projects. One is the synthetic biology approach in simulation with the established viral vectors. However, the synthetic gene therapy vector will not be as cytotoxic as the commonly applied viral vectors. The other is the synthetic biology approach on the basis of naked plasmid vectors, while the efficiency and specificity of the gene therapy vector can be ensured by synthetic biology modification. The two sub-projects are interconnected in that the flexible synthetic domains of the key proteins are truly interchangeable.

Project1

Basic Idea

Project1 is aimed at synthesizing a gene therapy vector which is structurally and functionally similar to a commonly used viral vector termed adenovirus vector[6]. However, in order to achieve the synthetic biology standard for human practice in the realm of gene therapy, this gene therapy vector should be industrially easy to manipulate in its production and genetically easy to modify in its specificity. Also, based on the social implication of synthetic biology[7,8], the synthetic gene therapy vector must be safe for possible clinical use.


We compared and contrasted the structure of viron between adenovirus and bacteriophage lambda, and found the following facts: 1) the shapes of the viron of both adenovirus and bacteriophage lambda is a regular icosohedron[9], while the adenovirus protein (Fiber) that determines its specificity is positioned on the vertices of the icosohedral viron, which can specifically bind with a receptor called CAR[10]; 2) CAR is widely distributed on the plasma membrane of various types of cells[11-13], which partially contributes to its poor specificity to the target cells as well as its potential cytotoxicity[9,10]; 3) the proliferation of bacteriophage lambda is solely on the basis of its host E.coli, while the production of adenovirus gene therapy vector normally depends on eukaryotic cell lines which are more cost-inefficient and time-consuming; 4) the vertices of adenovirus viron are composed of pentamer of protein III attached to trimer of protein fiber, while the vertices of bacteriophage lambda viron are composed of protein C encoded by lambda phage genome.


Thus, if we can manage to synthesize a bacteriophage-lambda-based gene therapy vector in simulation to the adenovirus vector but modified at the vertices position of its viron, then the production of the synthetic gene therapy vector can be simplified and much easier to manipulate. In addition, considering the low immunogenicity of lambda phage proteins[6,14], the safety of the gene therapy can be improved compared with conventional adenovirus vector.


Our Project1 is equivalent to apply synthetic biology concepts and standards at the genomic level, constructing a genome which is neither adenovirus nor bacteriophage lambda genome. This synthetic genome, however, is capable of producing standardized and targeted gene therapy vectors for human clinical practice. Also, we use the abstraction principle in our design of this genome in order to make the synthetic gene therapy vector easy to be further modified, improved and industrialized. Project1 implicates the evolvement of synthetic biology to a higher level of living organism, the genome, which meets the trends of synthetic biology innovation.

Synthesis of the Gene Therapy Production System

Based on the standard of synthetic biology, we apply two approaches to synthesize the genome of our gene therapy vector

Lambda genome.png
Adenovirus genome.png

Bottom-Up Approach

As for the bottom-up approach, we amplify the target genes from the target genome(mostly structural genes from lambda phage genome, and also L5 (fiber) gene from adenovirus genome) and recombine them into one or two molecular cloning vectors according to the biobrick standard. In the synthetic genome of the gene therapy vector, gene C (which encodes the protein at the vertices of the lambda viroin) and L5 should be fused according to certain standardiztion consideration (termed targeted biobrick).In front of the encoding region bacteriophage lambda strucural proteins and the targeted biobrick, a T7 promoter (from iGEM parts) will be inserted for IPTG-inducible control.

Top-Down Approach

As for the top-down approach, we transplant the whole gene expression element under the upsteam regulation of promoter R' into a molecular cloning vector. Fortunately, the lambda promoter R' can be strongly enhanced by protein Q in the late state of wildtype phage infection, which makes a feasible scheme to regulate the structural proteins on the synthetic genome.In front of the encoding region of protein Q, a T7 promoter (from iGEM parts) will be inserted for IPTG-inducible control.

Synthesis of the Targeted Biobrick

The synthesized genome will be capable of producing gene therapy "viroins" with protein C specially modified. This targeted biobrick enables the synthetic gene therapy vector to be targeted specifically for certain types of cells. We generally decouple this biobrick into four "modules" (will be expressed to different domains in the C-Fiber fusion protein).

Synthesis of the Therapeutic DNA

Here we introduce another molecular cloning vector to mimic the bacteriophage lambda genome which will be packaged into the viroin. However, the synthetic “bacteriophage lambda genome” contains the therapeutic gene(s) needed by the target cells, which will be transported via stimulated viral introduction.

We term this molecular cloning vector “Therapeutic DNA”, which consists of a cos site for the package into the viroin of targeted gene therapy vector, the therapeutic gene(s) for in vivo gene therapy and the replication origin of bacteriophage lambda (including O gene and P gene).

Production of the targeted gene therapy vector

After the construction of the synthetic genome and the Therapeutic DNA which are carried by two molecular cloning vectors(they will carry different origins of DNA replication), we will cotransform them into the E.coli for the production of the targeted gene therapy vector.

After the addition of IPTG at proper peroid of the transformed bacteria, the structural proteins of the gene therapy vector will be expressed, which are sufficient for the package of the Therapeutic DNA (with O and P) into the gene therapy vector viroin.

Given appropriate time for enough package yields(evaluated by modeling), the E.coli for production will be lysated manually or inducibly. Then the gene therapy vectors can be isolated and enriched by established protocol of viroin purification.

Functioning of the targeted gene therapy vector

An idealized model for the functioning of the targeted gene therapy vector is proposed. After the injection of the purified gene therapy vectors, the vectors will conveyed to target cells by circulation (specific situations should be discussed with respect to different types of cells and different diseases). The synthetic vectors will invade into the target cells in a manner similiar to the wildtype adenovirus-attachment and internalization. This function is empowered by the targeted biobrick in the synthetic genome.

Firstly, the tissue-specific peptide (selected by phage display) on the surface of the viroin will attach to the receptors on the surface of the target cells. Secondly, the RGD domian at the bottom of the engineered fiber will interact with integrin of the targeted cells, thus internalize the whole viroin by endocytosis.

Project2

Basic Idea

Function of the System

Innovation of our Project

References(Project1)

[1] David A.Williams, and Christopher Baum. Gene Therapy—New Challenges Ahead. Science. 2003, 302, 400-401.

[2] Marina Cavazzana-Calvo et al.. Immunodeficiency (SCID)-X1 Disease Gene Therapy of Human Severe Combined. Science. 2000, 288, 669-672.

[3] Esmail D. Zanjani, and W. French Anderson. Prospects for in utero human gene therapy. Science. 1999, 285, 2084-2088.

[4] Leland H. Hartwell, Leroy Hood, Michael L. Goldberg, Ann E. Reynolds, Lee M. Silver, Ryth C. Veres. Genetics: From Genes to Genome. McGrawHall, 3rd edition, 2008.

[5] http://en.wikipedia.org/wiki/Gene_therapy

[6] Jerry Guo, and Hao Xin. Splicing out the West?. Science. 2007, 314, 1232-1235.

[7] Chopra Paras, and Akhil Kamma. Engineering life through Synthetic Biology. In Silico Biology 6. http://www.bioinfo.de/isb/2006/06/0038. Retrieved on 2008-06-09.

[8] http://www.syntheticbiology.org

[9] Michael T. M., John M. M., and Jack P. Brock Biology of Microorganisms. Prentice Hall, 12th edition, 2008.

[10] Glen RN, and Phoebe LS. Role of αv integrins in adenovirus cell entry and gene delivery. Microbiology and Molecular Biology reviews. 1999, 63, 725-734.

[11] Yuanming Zhang, and Jeffrey M. Bergelson. Adenovirus Receptors. J. Virol. 2005, 79, 12125–12131.

[12] Miyazawa N, Crystal RG, and Leopold PL. Adenovirus serotype 7 retention in a late endosomal compartment prior to cytosol escape is modulated by fiber protein. J. Virol. 2001, 75, 1387–1400.

[13] Shayakhmetov DM, Eberly AM, Li ZY, and Lieber A. Deletion of penton RGD motifs affects the efficiency of both the internalization and the endosome escape of viral particles containing adenovirus serotype 5 or 35 fiber knobs. J. Virol. 2005, 79, 1053–1061.