Team:Groningen/Brainstorm/Growth Control

From 2009.igem.org

(Difference between revisions)
(Parts in the Registry of Standard Parts:: adding biobricks)
m (Previous contests: adding zurich 2008)
Line 24: Line 24:
:*[http://parts.mit.edu/wiki/index.php/Synchronization_of_Cell_Cycles Bangalore 2006]
:*[http://parts.mit.edu/wiki/index.php/Synchronization_of_Cell_Cycles Bangalore 2006]
:*[https://2008.igem.org/Team:ESBS-Strasbourg Strasbourg 2008]
:*[https://2008.igem.org/Team:ESBS-Strasbourg Strasbourg 2008]
 +
:*[https://2008.igem.org/Team:ETH_Zurich/Wetlab/Switch_Circuit#Genetic_Experiments_using_Ribosome_Modulation_Factor_.28RMF.29| Zurich 2008]
==Parts in the [http://partsregistry.org/Main_Page Registry of Standard Parts]:==
==Parts in the [http://partsregistry.org/Main_Page Registry of Standard Parts]:==

Revision as of 13:21, 2 May 2009

Home The Team Brainstorm Our Vision Parts Modelling Notebook
Under construction

Contents

Introduction

Bacteria have a choice between using nutrients for growth or for the production of (commercially) valuable proteins. Being able to control the bacterial growth cycle and inducing a premature stationary phase will create the possibility to spend more time producing, using less nutrients for biomass and more for desired production. Stationary phase is nothing more than a stop in an increase of cell numbers by cell death being equal to cell growth. Normally this is induced by the limitation of available nutrients or by means of quorum sensing in response to high cell density. With this knowledge, a culture can be created that can respond by limited cell death in response to an added molecule that mimics the response to high cell density.

See also Chemostat
One of the most important features of chemostats is that micro-organisms can be grown in a physiological steady state. In steady state, all culture parameters remain constant (culture volume, dissolved oxygen concentration, nutrient and product concentrations, pH, cell density, etc.). Because obtaining a steady state requires at least 5 volume changes, chemostats require large nutrient and waste reservoirs. Creating biological "chemostat" would circumvent these drawbacks.

Previous contests

Quorum Sensing

Cell cycle

Parts in the Registry of Standard Parts:

Quorum sensing

  • BBa_K104001: Sensor for small peptide Subtilin
  • BBa_I13211: Biobricked version of the natural Lux quorum sensing system

Cell cycle



Cell death

Related Literature

Quorum sensing

In this paper, the molecular mechanism underlying regulation of nisin and subtilin production is reviewed.
Addition of N-acylhomoserine lactone in the exponential growth phase, regardless of cell density, induces a repression of cell growth of P. aeruginosa
In this study Competence stimulating peptide is shown to initiates release of DNA from a subfraction of the bacterial population, probably by cell lysis.
In this study they created a synthetic ecosystem with bi-directional communication through quorum sensing which regulate each other's gene expression and survival via engineered gene circuits.