Team:UCSF

From 2009.igem.org

(Difference between revisions)
Line 24: Line 24:
   <br>
   <br>
       <h2 align="left">Engineering the Movement of Cellular Robots</h2>
       <h2 align="left">Engineering the Movement of Cellular Robots</h2>
-
       <p align="left">Some eukaryotic cells, such as white blood cells, have the amazing
+
       <p align="left">Some eukaryotic cells, such as white blood cells, have the amazing ability to sense specific external chemical signals and move toward those signals.  This behavior, known as chemotaxis, is a fundamental biological process crucial to such diverse functions as development, wound healing and immune response. In our project, we used a synthetic biology approach to manipulate signaling pathways that mediate chemotaxis in two model organisms:<br> HL-60 (neutrophil-like) cells and the slime mold, Dictyostelium discoideum. </p>  
-
ability to sense specific external chemical signals, and move toward
+
-
those signals.  This behavior, known as chemotaxis, is a fundamental
+
-
biological process crucial to such diverse functions as development,
+
-
wound healing and immune response. Our project focuses on using a
+
-
synthetic biology approach to manipulate signaling pathways that mediate
+
-
chemotaxis in two model organisms: HL-60 (neutrophil-like) cells and the
+
-
slime mold, Dictyostelium discoideum.  We are attempting to reprogram
+
-
the movements that the cells undergo by altering the guidance and
+
-
movement machinery of these cells in a modular way.  For example, can we
+
-
make cells move faster?  Slower?  Can we steer them to migrate toward
+
-
new signals?
+
-
Through our manipulations, we hope to better understand how these
+
<p align="left">In doing so, <strong>we have demonstrated that we can regulate both the navigation and speed of our cells, as well as harness their ability to carry a payload.</strong></p>
-
systems work, and eventually to build or reprogram cells that can
+
 
-
perform useful tasks. Imagine, for example, therapeutic nanorobots that
+
<p align="left">Through our manipulations, we hope to better understand how these systems work, and eventually to build or reprogram cells that can perform useful tasks. Imagine, for example, therapeutic nanorobots that could home to a directed site in the body and execute complex, user-defined functions (e.g., kill tumors, deliver drugs, guide stem cell migration and differentiation).  Alternatively, imagine bioremediation nanorobots that could find and retrieve toxic substances.  Such cellular robots could be revolutionary biotechnological tools.</p>
-
could home to a directed site in the body and execute complex,
+
-
user-defined functions (e.g., kill tumors, deliver drugs, guide stem
+
-
cell migration and differentiation).  Alternatively, imagine
+
-
bioremediation nanorobots that could find and retrieve toxic
+
-
substances.  Such cellular robots could be revolutionary
+
-
biotechnological tools.</p>
+
     <p align="right"><a href="https://2009.igem.org/Team:UCSF/Background">More...</a></p>
     <p align="right"><a href="https://2009.igem.org/Team:UCSF/Background">More...</a></p>
       <p align="right">&nbsp;</p>
       <p align="right">&nbsp;</p>

Revision as of 16:33, 21 October 2009


Untitled Document

Biological Detection and Delivery Systems


Engineering the Movement of Cellular Robots

Some eukaryotic cells, such as white blood cells, have the amazing ability to sense specific external chemical signals and move toward those signals. This behavior, known as chemotaxis, is a fundamental biological process crucial to such diverse functions as development, wound healing and immune response. In our project, we used a synthetic biology approach to manipulate signaling pathways that mediate chemotaxis in two model organisms:
HL-60 (neutrophil-like) cells and the slime mold, Dictyostelium discoideum.

In doing so, we have demonstrated that we can regulate both the navigation and speed of our cells, as well as harness their ability to carry a payload.

Through our manipulations, we hope to better understand how these systems work, and eventually to build or reprogram cells that can perform useful tasks. Imagine, for example, therapeutic nanorobots that could home to a directed site in the body and execute complex, user-defined functions (e.g., kill tumors, deliver drugs, guide stem cell migration and differentiation). Alternatively, imagine bioremediation nanorobots that could find and retrieve toxic substances. Such cellular robots could be revolutionary biotechnological tools.

More...

 

 

BUILDING CELL-BOTS

Step 1 - Engineering NAVIGATION

Step 2 - Engineering SPEED

Step 3 - Carrying a PAYLOAD

Our Vision for the Future

 

 

OUR TEAM

Team Members

Summer Experience

Notebooks

NEW BIOBRICK Standard RFC28 - Aar1 Cloning System

Parts submitted to the Registry

GOLD MEDAL Requisites

 






UCSF iGEM 2009 is sponsored by...