Team:Valencia/StochasticApproach

From 2009.igem.org

(Difference between revisions)
(Stochastic approach)
(Stochastic approach)
Line 12: Line 12:
Where the quotient <i>Q<sub>Ca</sub>/N<sub>Ca</sub></i> (number of calcium channels in open state / total number of calcium channels) means the activation variable and [[Image:Gca.jpg]] is the maximum calcium conductance. Each calcium channel is a Markov process with some voltage-dependent transition rates. The kinetic scheme is the following:
Where the quotient <i>Q<sub>Ca</sub>/N<sub>Ca</sub></i> (number of calcium channels in open state / total number of calcium channels) means the activation variable and [[Image:Gca.jpg]] is the maximum calcium conductance. Each calcium channel is a Markov process with some voltage-dependent transition rates. The kinetic scheme is the following:
-
[[Image:Markov.jpg|center]]
+
[[Image:Markov.jpg|750px|center]]

Revision as of 08:32, 7 September 2009


Home Team Project Human Practices Notebook News

Stochastic approach

At this point, we are going to use stochastic methods in order to study the activation/inactivation of VDCCs. Unlike deterministic model, the voltage-dependent conductance for the calcium channels is now given by:

Stoc1.jpg

Where the quotient QCa/NCa (number of calcium channels in open state / total number of calcium channels) means the activation variable and Gca.jpg is the maximum calcium conductance. Each calcium channel is a Markov process with some voltage-dependent transition rates. The kinetic scheme is the following:

Markov.jpg