iGEM Microbiology Intro

Prof. Sebastian Maerkl

Index

- Prokaryotic Structure and Function
 - Cell components
 - Chemotaxis and flagellar
 - Living magnets
- Nutrition and Growth
 - Growth requirements
 - Plating techniques
 - Growth curve
 - Chemostats / turbidostats
- Microbial Genetics
 - Recombination
 - Transposons
 - Plasmids
 - Conjugation
 - Transformation
 - Transduction

Prokaryotic Cell Structure

A (4) (1) (2) (9) (6) (5)

- Plasma Membrane
- Gas vacuole: buoyancy
- Ribosomes: protein synthesis
- Inclusion Bodies: storage of C, P, etc
- Nucleoid: chromosomal DNA
- Periplasmic space: hydrolytic and binding proteins
- Cell Wall: mechanical rigidity
- Capsules: resistance to phagocytosis; adhesion
- Fimbriae and pili: attachments and mating
- Flagella: movement
- Endospore: survival mechanism

Morphology and Classification

Gram-Positive

Gram-Negative

Flagella and Chemotaxis

• Tumble:

- CheA autophosphorylates if MCP is not bound
- CheA then phosphorylates CheY, which causes a tumble (CheYp is rapidly degraded to CheY by CheZ

• Run:

- Attractant binds to MCP causing a stearic shift, limiting autophosphorylation of CheA
- CheYp levels drop, causing CCW rotation

Resetting:

- CheR methylates MCPs causing increased CheA autophosphorylation
- This causes increases in CheYp and CheBp, which lead to CW rotation and de-methylation of MCPs

Living Magnets (Magnetotactic Bacteria)

- Magnetosomes consist of magnetic iron mineral crystals made from: Fe₃O₄, greigite, or Fe₃S₄
- Magnetosomes align the bacteria in the geomagnetic field, allowing for directed taxis

Microbial Metabolism

- Prototrophs: can thrive on minimal medium
- Auxotrophs: lack the ability to synthesize a particular organic compound (commonly used in yeast for selection)

Carbon Sources

- Autotrophs: CO₂ principal carbon source
- Heterotrophs: reduced, preformed organic molecules

Energy Sources

- Phototrophs: light
- Chemotrophs: oxidation of organic or inorganic compounds

Hydrogen or Electron Sources

- Lithotrophs: reduced inorganic molecules
- Organotrophs: organic molecules

Algea: photolithotrophic autotrophs

E.coli: chemoorganotrophic heterotroph

Media

- Synthetic or Defined Media: all components are known. Chemoorganotrophic heterotrophs can be grown on media containing glucose, ammonium salts and other salts.
- Complex Media: contain undefined components such as peptones (protein hydrolysates), meat extract or yeast extract
- Selective Media: favor particular microorganisms

• Differential Media: permit the identification of bacteria

based on biological characteristics

MacConkey agar is both selective and differential: it selects for gramnegative bacteria and stains for lactose fermentation

Culturing

- Generation of Pure Cultures is extremely important in general microbiology, but also in cloning!
- Two approaches: streak plating and spread plating
- Spread plating is also used to obtain growth curves by counting colony forming units (CFUs)

 Each colony is clonal! They arise from a single bacterium and thus are genotypically the same.

Spread Plating

Figure 6-11 Brock Biology of Microorganisms 11/e © 2006 Pearson Prentice Hall, Inc.

- Spread plating is also used to obtain growth curves by counting colony forming units (CFUs).
- The most accurate count of live cells. Of course dead or dormant cells are not counted, as they do not form a colony.
- Faster: optical turbidity measurements
- Bacterial lawns are generated by spread plating.
- Transformed bacteria are generally spread plated.

Batch Growth

Some generation times:

• E.coli: 21 minutes

B.subtilis: 26 minutes

S.cerevisiae: 120 minutes

• M.tuberculosis: 720 minutes (12 hours)

 N_t = population at time t

 N_0 = initial population

n = number of generations in
time t

 $N_{t} = N_{0} \times 2^{n}$

Solve for n:

n=logN_t-logN₀/log2

Mean growth rate constant

(k): k=n/t

Mean generation time (g):

$$g=1/k$$

Chemostats / Turbidostats

Chemostat:

- Constant dilution rate
- D=flow rate/Volume
- At steady state the specific growth rate (μ) is equal to D
- If μ_{max} is < than D, culture will wash out

Turbidostat:

- Cell density determines dilution rate
- More stable at high-dilution rates and low-cell densities
- $-\ \mu_{\text{max}}$ is more easily achieved

Recombination

Genetic recombination is the process by which a strand of genetic material (usually DNA; but can also be RNA) is broken and then joined to a different DNA molecule.

- Prokaryotic recombination takes place after horizontal gene transfer (as opposed to during meiosis in eukaryotes)
- Three possible ways for the horizontal transfer of DNA:
 - Conjugation
 - Transformation
 - Transduction

Transposition

- Transposons are pieces of DNA that can "hop" in and out of target DNA sequences.
- They code for a transposase which recognizes inverted repeats flanking the transposon (such a simple transposon is called insertion sequence, ISs containing other genes are called composite transposons)
- Transposons play an important role in evolution!

Bacterial Plasmids

- Plasmids are circular DNA molecules that can exists independently of host chromosomes and they:
 - Have their own replication sites (they are a replicon).
 - Contain a relatively small number of genes that are nonessential to the host.
 - Can exists either as a single copy or multiple copies in a cell.
 - Episomes are plasmid that can integrate into the host genome.
 - Conjugative plasmids carry genes coding for pili allowing them to undergo horizontal gene transfer through conjugation.

- Fertility Factors: allows for conjugation; carries genes for sex pili formation, DNA transfer, etc. Is an episome.
- R Plasmids: resistance factors; carry genes capable of neutralizing antibiotics
- Col Plasmids: code for bacteriocins, which are bacterial toxins
- Virulence Plasmids: make their host more pathogenic
- Metabolic Plasmids: as the name implies
- Vectors are plasmids used in genetic engineering.

Conjugation

- Bacterial conjugation is the transfer of genetic material between bacteria through direct cellto-cell contact.
- Lederberg and Tatum showed in 1946 that DNA could be transferred between two auxotrophic (triple auxotrophs) strains of bacteria
- Bernard Davis then showed in 1950 that this DNA transfer requires direct physical contact.
- F⁺ x F⁻ conjugation: transfers a f factor plasmid without transferring bacterial genes
- Hfr conjugation: transfer of an integrated f factor, causes transfer of chromosomal material, but as only part of the f factor is transferred recipient remains F⁻
- **F' conjugation:** a Hfr host de-integrates the f factor including part of the bacterial chromosome. The entire F' plasmid is transferred.

Transformation

- Transformation is the uptake of naked DNA from the environment in an inheritable form.
- The natural transformation efficiency of **competent cells** is on the order of 10⁻³ (1 in 1000 cells takes up DNA).
- Laboratory generated competent cells have efficiencies on the order of 10^6-10^9 transformants per µg of DNA.
- Reversal of auxotrophies or antibiotic resistance is often used to select for transformants in the lab.

Figure 14.16 Bacterial Transformation. Transformation with (a) DNA fragments and (b) plasmids. Transformation with a plasmid often is induced artificially in the laboratory. See text for details. The transforming DNA is in red.

Transduction

- Transduction is the process by which DNA is transferred from one bacterium to another by a virus.
- Phage have two life cycles:
 - Lysogenic and lytic
- Generalized transduction: consequence of the lytic cycle, bacterial DNA may be randomly packaged
- Specialized transduction: if a prophage excises incorrectly and takes along a piece of chromosomal DNA

Homework

- Take a look at my favorite iGEM projects from 2008:
 - UC Berkeley: Clonebotshttp://2008.igem.org/Team:UC Berkeley
 - Imperial College: Biofabricator subtilis
 http://2008.igem.org/Team:Imperial College
 - Caltech: multi-functional probiotic bacteria <u>http://2008.igem.org/Team:Caltech</u>
 - Harvard: Bactricity http://2008.igem.org/Team:Harvard
- Read up on some common/interesting bugs:
 - E.coli, S.cerevisiae, H.pylori, B.subtilis, S.oneidensis,
 Magnetotactic bacteria

Seminars

- GHI Seminar every Thursday at 12:15 in AI 1153
- Friday, March 13th 2009 15:30pm
 Location: Al 1 153

Life without a wall or division machine in Bacillus subtilis