Massively-parallel molecular dynamics simulations on New York Blue

David F. Green

Stony Brook University

State University of New York

Department of Applied Mathematics & Statistics

Graduate Program in Biochemistry & Structural Biology

NY Blue Tutorial Stony Brook University 08/04/08

The Green Lab

http://www.ams.sunysb.edu/~dfgreen/

Computational Biology in AMS

http://compbio.ams.sunysb.edu/

Many thanks to ...

- . Current Research Group
 - . Noel Carrascal*
 - Jessica Chaffkin
 - · Yukiji Fujimoto
 - . Ji Han
 - . Tao Jiang
 - . Vadim Patsalo*
- . Former Group Members
 - · Jonathan Cheng
 - . Ryan TerBush
 - · Yong Yu

- . Collaborators
 - . Dan Raleigh (Stony Brook)
 - . Steve Skiena (Stony Brook)
 - Steve Smith (Stony Brook)
 - Yaoxing Huang (Aaron Diamond AIDS Research Center)
- . Support:
 - Stony Brook Dept. of Applied Math & Statistics
 - Microsoft Research
 - New York Center for Computational Science

Biomolecular Simulation

- Simulation of biological macromolecules is a key area of interest:
 - Understand the dynamic mechanisms of macromolecular function (protein folding, catalysis, molecular machines)
 - Predict the energetics of various biological processes (ligand association, protein stability)
 - Design novel molecules with particular properties (drug design, protein engineering)

The Green Lab

http://www.ams.sunysb.edu/~dfgreen/

Computational Biology in AMS

http://compbio.ams.sunysb.edu/

Types of Calculation

- Energy calculations
 - Single point (state) vacuum energies
 - Solvated (explicit or implicit) state free energies
 - Ensemble-averaged free energies
- Conformational search
 - Constant temperature ensembles
 - Molecular dynamics or Metropolis Monte Carlo
 - Brute force enumeration
 - Global optimization/"intelligent" search
 - Simulated Annealing, Dead-End Elimination, Genetic Algorithms

Biomolecular Energetics

- Molecular energetics are properly described by quantum mechanics
 - Much too costly for macromolecules
- Molecular mechanics force fields are classical approximations to the QM energy
 - Vibrations between bonded atoms described by springs; rotation about bonds described as sinusoidal functions; interactions between nonbonded atoms described by Coulomb's Law and Van der Waals interactions.

The Green Lab

http://www.ams.sunysb.edu/~dfgreen/

Computational Biology in AMS

http://compbio.ams.sunysb.edu/

Molecular dynamics - Integrating Newton's Laws of Motion

- Energetic models give E = E(x), where x is the Cartesian coordinates of all atoms in the system.
- Force is given by the gradient of the energy, $F(x) = -\nabla E(x)$.
- Newton's Laws then relate the dynamics of the system to the forces on each atom:
 - $F_i(x) = m_i a_i(x(t))$
 - $\mathbf{a}_i(\mathbf{x}(t)) = d\mathbf{v}_i(t)/dt$
 - $\mathbf{v}_i(t) = d\mathbf{x}_i/dt$
- This system of ODE's can be solved by any of many standard integration schemes.
- By the ergotic principle, a converged MD simulation gives a constant temperature, equilibrium ensemble.

The Green Lab

Major issues in molecular dynamics: Solvent

- Biology occurs (usually) in a salty, aqueous environment
 - Accurate simulations require the solvent to be treated appropriately
 - Most accurate approach involves explicitly representing both water and mobile ions in the simulation; periodic boundary conditions are generally used to minimize artifacts from a finite-sized simulation size.
 - System sizes become 25,000-100,000 atoms or more, in the unit cell.
 - Alternative approaches replace explicitly represented solvent with implicit continuum models
 - The Poisson-Boltzmann equation describes electrostatic interactions with a polarizable continuum; the Generalized Born model gives an approximation to the PB solution.
 - Cavitation and solute-solvent VDW interactions are often approximated as proportional to Surface-Area.

The Green Lab

http://www.ams.sunysb.edu/~dfgreen/

Computational Biology in AMS

http://compbio.ams.sunysb.edu/

Major issues in molecular dynamics: Time scales

- Biomolecular events occur over a wide range of time scales
 - Bond vibrations occur on the femtosecond time scale.
 - Rotations of chemical groups happens over picoseconds.
 - Mobile loops sample conformations over nanoseconds.
 - Global conformational transitions may take tens or hundreds of nanoseconds (or more).
 - Protein folding generally takes upwards of milliseconds.
- Accurate descriptions of energetics requires long simulations (100+ ns); accurate simulation of dynamics requires time steps of 1 or 2 fs.
 - At least 10^7 steps are needed (often 10^8 or more).

Major issues in molecular dynamics: Long range interactions

- Non-bonded interactions exist between all pairs of atoms
 - Computational expense of the complete energy (or forces) would increase proportionally to N².
 - Van der Waals interactions fall off with 1/R⁶, and thus can be safely truncated at moderate distances.
 - Coulombic interactions fall off with 1/R, and forces with $1/R^2$; since volume in a shell at R increases with R^2 , the total electrostatic energy is not unconditionally convergent. Truncation could lead to artifacts.
 - Particle-mesh Ewald techniques both address the conditional convergence and allow long range electrostatic interactions to be computed with the FFT (charges are mapped on a regular lattice).
 - Fast multipole methods can scale better than the FFT, but are not efficiently implemented in most simulation packages.

The Green Lab

http://www.ams.sunysb.edu/~dfgreen/

Computational Biology in AMS

http://compbio.ams.sunysb.edu/

Major issues in molecular dynamics: Inter-processor communication

- Forces are dependent on the positions of all other atoms
 - Each time step requires a force evaluation, which would require knowledge of all other atomic positions.
 - With Ewald summation, energy evaluation involves two distinct phases
 - Interactions with near neighbors (bonded interactions, and short range electrostatic and VDW interactions): This term requires knowledge of only near neighbor atomic positions. With neighbor lists, required internode communication can be minimized; but only to a point. Theoretical scaling is O(N).
 - Ewald sum for long range electrostatics: All atomic positions are required in updating the Ewald mesh. A 3-D FFT on the grid must them be performed. Theoretical scaling is $O(N_a \log N_a)$.
- In large systems, the Ewald sum may be a significant fraction of the computational cost, and FFT scaling may influence performance.

Choices in Molecular Dynamics

Choice of force field

- CHARMM, AMBER, OPLS, Gromos, and more.
 - All modern force-fields are quite reasonable, and perform well
 - AMBER has good support for small molecules (GAFF).
 - CHARMM has good support for lipids and carbohydrates.

Choice of simulation package

- Highly integrated, multi-functional simulation packages
 - . CHARMM, AMBER
- Performance-optimized packages with limited functionality
 - NAMD, Gromacs

The Green Lab

http://www.ams.sunysb.edu/~dfgreen/

Computational Biology in AMS

http://compbio.ams.sunysb.edu/

Choices in Molecular Dynamics Our Current Workflow

- All-atom CHARMM is used as the force field of choice in all simulations:
 - Param22/27 for proteins/nucleic acids; CSFF for sugars.
- CHARMM (on Seawulf and local servers) is used for system setup and for post-simulation analysis.
- NAMD (on NY Blue) is used for production dynamic simulations.

System setup - Essential steps

Structures obtainable from the Protein Databank

- These generally do not include hydrogen atoms; they can be missing some atoms; ambiguities exist on the orientation of amides (Asn, Gln) and histidine; and protonation states are underdetermined.
- Assign protonation and amide/His flip states (REDUCE).
- Place hydrogen atoms, and build missing atoms (CHARMM).
- Surround system with waters from a pre-equilibrated simulation, giving a minimum 10 Å buffer on each side (CHARMM).
- Add salt (Na+ and Cl-) in random positions to a total concentration of 0.145 M (1 NaCl per 376 waters); adjust ion concentrations to give the system a neutral net charge (CHARMM).
- 5. Output XPLOR format PSF and PDB files for NAMD (CHARMM).

The Green Lab

http://www.ams.sunysb.edu/~dfgreen/

Computational Biology in AMS

http://compbio.ams.sunysb.edu/

Example 1 - Heterotrimeric G-Protein

 A key signaling protein complex

	Residues	Atoms
$G\alpha$	349	5578
G β	339	5121
G_{γ}	54	849
GDP	1	40
Na+	80	80
CI-	63	63
Water	27551	82653
Total	28437	94384

Example 1 - Heterotrimeric G-Protein

- Simulations run on multiple states of the system
 - Full complex (trimer)
 - Unbound $G\alpha$ (with GDP or GTP.Mg)
 - Unbound $G\beta\gamma$

	Atoms	Box size	2 fs time step
G αβγ. GDP	94384	112×98×81	12 (14) Å cutoff
$G\alpha.GDP$	52123	100×77×65	SHAKE on H atom
$G\alpha.GTP.Mg$	51563	100×76×64	bond lengths
G βγ	47101	93×78×61	Output every 2 ps
			0 a. pa. 0.0. / = po

The Green Lab

http://www.ams.sunysb.edu/~dfgreen/

Computational Biology in AMS http://compbio.ams.sunysb.edu/

Example 1 - NAMD Input Minimization and heating

```
# Adjustable Parameters
coordinates ../1gia_ions_box.pdb
structure
              ../1gia ions box.psf
set temperature
               100
set outputname
               1gia 1R
firsttimestep
# Simulation Parameters
# Input
paraTypeCharmm
              /gpfs/home2/ncarrasc/usr/par_all27_prot_na_sugar.prm
parameters
temperature
              $temperature
```

Example 1 - NAMD Input Minimization and heating

# Force field Parameters exclude 1-4scaling cutoff switching switchdist pairlistdist	scaled1 1.0 12. on 10. 14
# Integrator Parameters timestep rigidBonds nonbondedFreq fullElectFrequency stepspercycle	2.0 all 1 1 20
<pre># Temperature Control reassignFreq reassignTemp reassignIncr reassignHold</pre>	250 100 5. 300

# Periodic Boundary	Conditi	lons		
cellBasisVector1	101.3	0.0	0.0	
cellBasisVector2	0.0	77.4	0.0	
cellBasisVector3	0.0	0.0	65.4	
cellOrigin	0.0	0.1	0.1	
<pre>wrapAll on # PME (for full system periodic electrostatics)</pre>				
PME PMEGridSizeX	yes 102			

The Green Lab

http://www.ams.sunysb.edu/~dfgreen/

Computational Biology in AMS

http://compbio.ams.sunysb.edu/

78

72

Example 1 - NAMD Input Minimization and heating

PMEGridSizeY PMEGridSizeZ

# Constant Pressure Con	trol	# Output	
useGroupPressure	yes	outputName	\$outputname
useFlexibleCell	no		
useConstantArea	no	restartfreq	500
		dcdfreq	1000
langevinPiston	on	xstFreq	1000
langevinPistonTarget	1.01325	outputEnergies	1000
langevinPistonPeriod	200.	outputPressure	1000
langevinPistonDecay	100.		
langevinPistonTemp	\$temperature		
	_		

minimize 240

reinitvels \$temperature

run 100000

The Green Lab

Example 1 - NAMD Input Changes for production run

```
# Continuing a job from the restart files
set temperature
                  300
set inputname
                   ../1R/1gia 1R
                   $inputname.restart.coor
binCoordinates
binVelocities
                   $inputname.restart.vel
extendedSystem
                          $inputname.xsc
firsttimestep
                   100000
# Constant Temperature Control
langevin
                   on ;# do langevin dynamics
                   5
langevinDamping
                        ;# damping coefficient (gamma) of 5/ps
langevinTemp
                   $temperature
langevinHydrogen
                   no ;# don't couple langevin bath to hydrogens
# Execute dynamics
run 2000000
```

The Green Lab

http://www.ams.sunysb.edu/~dfgreen/

Computational Biology in AMS

http://compbio.ams.sunysb.edu/

Example 1 - LoadLeveler Input

```
# @ job_type = bluegene
# @ class = normal
# @ executable = /gpfs/home2/ncarrasc/bin/mpirun32
# @ bg_partition = B512TB03
# @ arguments = -exe /gpfs/home2/ncarrasc/bin/namd2 \
-cwd /gpfs/home2/ncarrasc/G-Prot/full_seq2/1GIA/1R \
-args "/gpfs/home2/ncarrasc/G-Prot/full_seq2/1GIA/1R/1R.in"
# @ initialdir = /gpfs/home2/ncarrasc/G-Prot/full_seq2/1GIA/1R
# @ input = /dev/null
# @ output = $(jobid).out
# @ error = $(jobid).err
# @ wall_clock_limit = 1:00:00
# @ notification = complete
# @ queue
```

Example 1- CHARMM on Seawulf

The Green Lab http://www.ams.sunysb.edu/~dfgreen/

Computational Biology in AMS http://compbio.ams.sunysb.edu/

Example 1- NAMD on NYBlue

Caveat: No PME, except X

The Green Lab http://www.ams.sunysb.edu/~dfgreen/

Example 1 - Scaling with CPU

Caveat: No PME

The Green Lab

http://www.ams.sunysb.edu/~dfgreen/

Computational Biology in AMS

http://compbio.ams.sunysb.edu/

Example 1- Results

The Green Lab http://www.ams.sunysb.edu/~dfgreen/

Example 2 - MVL

 An anti-viral carbohydrate binding protein

	Residues	Atoms
Protein	2×113	2×1705
Sugar	4×4	4x120
Na+	29	29
CI-	19	19
Water	9399	28197
Total	9689	32135

The Green Lab

http://www.ams.sunysb.edu/~dfgreen/

Computational Biology in AMS http://compbio.ams.sunysb.edu/

Example 2 - MVL Scaling

2 fs time step
12 (14) Å cutoff
71x66x64 Å box
SHAKE on H atom
bond lengths
Output every ps
72x66x66 FFT
grid (when
used)

The Green Lab http://www.ams.sunysb.edu/~dfgreen/

Scaling with System Size

The Green Lab http://www.ams.sunysb.edu/~dfgreen/

Computational Biology in AMS http://compbio.ams.sunysb.edu/

Implicit solvent models.

- In fully explicit solvent simulations, water molecules can consist of ~90% of the total system.
- The implicit-solvent Generalized-Born model thus allows the system size to be reduced by a factor of 10; although each step requires more computation.
 - The GB model involves an all-all calculation for computing effective Born radii; however this radii update need not be done every step.

Implicit solvent models in CHARMM.

• GBSW module in CHARMM on Seawulf

	Residues	Atoms
Protein	2×113	2×1705
Sugar	4×4	4×120
Na+	0	O
CI-	0	0
Water	0	0
Total	242	3890

The Green Lab http://www.ams.sunysb.edu/~dfgreen/ Computational Biology in AMS http://compbio.ams.sunysb.edu/

Implicit vs Explicit Solvent Simulations

- Similar performance obtained for 32 times # of CPUs.
 - Seawulf CPUs are 3.4GHz Xeon; NYBlue are 700MHz PPC.

Key points + Future directions

Key points for current use

- Running NAMD on NY Blue is straightforward and gives good performance.
- Care should be taken with system setup, and additional tools are needed.
- Think carefully about simulation length and size of output.
 - . 50,000 atoms, output every 2 ps => 300 MB per ns

. Increasing capability for MD simulations on NY Blue

- . Installation of WORDOM, a suite of MD analysis tools.
- · Compilation & installation of CHARMM.
- Software for Poisson-Boltzmann calculations (MultiGrid PBE, and the ICE package).
- Software for protein design (DEE/A*).

The Green Lab

http://www.ams.sunysb.edu/~dfgreen/

Computational Biology in AMS

http://compbio.ams.sunysb.edu/

Thank you!