How to judge a system that cannot oscillate?
After we have tried so many groups of parameters, the question approaches that why some of the systems are asymptotic stable. This asymptotic stability of fixed points of a non-linear system can often be established using the Hartman–Grobman theorem.

In our system, suppose 3-order differential equations are denoted as following form:
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To find the fixed point, we set
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After we find the fixed point p, s.t. f(p)=g(p)=h(p)=0,then we compute the jacobian matrix:
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Let 
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 Jacobian matrix at the point p. If all eigenvalues of 
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 have strictly negative real part then the solution is asymptotically stable. This condition can be tested using the Routh–Hurwitz criterion.

Example:

If a = 26,b = 1,c = 6,d = 21,e = 1,f = 46,g = 21,h = 1,we obtain the fixed point 

p = (4.1967, 0.7953, 0.0000);

Then we evaluated the eigenvalues for the jacobian :

-32.0086 

  -0.5849 + 5.3151i

  -0.5849 - 5.3151i

Their real parts are negative, so solution is asymptotically stable. This result corresponds with the following figure.
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