Team:Duke
From 2009.igem.org
Line 187: | Line 187: | ||
<img src="https://static.igem.org/mediawiki/2009/d/d0/Dukelogo.gif" width="15%" alt="Duke logo" /> | <img src="https://static.igem.org/mediawiki/2009/d/d0/Dukelogo.gif" width="15%" alt="Duke logo" /> | ||
</A> </div><table class="links"> <tr> <td align="center" ><a id="show-home">Home</a></td><td align="center" ><a id="show-project">Project</a></td><td align="center" ><a id="show-notebook">Notebook</a></td><td align="center" ><a id="show-team">Team</a></td><td align="center" > | </A> </div><table class="links"> <tr> <td align="center" ><a id="show-home">Home</a></td><td align="center" ><a id="show-project">Project</a></td><td align="center" ><a id="show-notebook">Notebook</a></td><td align="center" ><a id="show-team">Team</a></td><td align="center" > | ||
- | </td></tr> </table></center><div id="home-box"> <IMG SRC="https://static.igem.org/mediawiki/2009/1/10/Duke.jpg"> | + | </td></tr> </table></center> |
- | </div><div id="project-box"> <h1> Project </h1><p>The process of high-throughput | + | |
+ | <div id="home-box"> <IMG SRC="https://static.igem.org/mediawiki/2009/1/10/Duke.jpg"> | ||
+ | </div> | ||
+ | |||
+ | <div id="project-box"> <h1> Project </h1><p>The process of high-throughput | ||
cloning is bottlenecked at the retriction and ligation stages. A combination of | cloning is bottlenecked at the retriction and ligation stages. A combination of | ||
high costs, requirements for restriction site specific enzymes and general inefficiency | high costs, requirements for restriction site specific enzymes and general inefficiency | ||
Line 205: | Line 209: | ||
that synthesizes poly(3HB-co-4HB), a biodegradable plastic, in <i>E. coli</i>. | that synthesizes poly(3HB-co-4HB), a biodegradable plastic, in <i>E. coli</i>. | ||
We will transform those genes into biobricks, with sticky ends, and efficiently | We will transform those genes into biobricks, with sticky ends, and efficiently | ||
- | combine them in a vector using CPEC.</p></div><div align="center" id="notebook-box"> | + | combine them in a vector using CPEC.</p></div> |
+ | |||
+ | |||
+ | <div align="center" id="notebook-box"> | ||
<TABLE WIDTH="75%" BORDER="0"><TR> <TD BACKGROUND="https://static.igem.org/mediawiki/2009/0/0a/Paper.jpg"><BLOCKQUOTE><BLOCKQUOTE><BLOCKQUOTE><P ALIGN="LEFT">6/3/09 | <TABLE WIDTH="75%" BORDER="0"><TR> <TD BACKGROUND="https://static.igem.org/mediawiki/2009/0/0a/Paper.jpg"><BLOCKQUOTE><BLOCKQUOTE><BLOCKQUOTE><P ALIGN="LEFT">6/3/09 | ||
<BR>Experiment: PCR with contents of tube labeled 7 as DNA template, Gel with | <BR>Experiment: PCR with contents of tube labeled 7 as DNA template, Gel with | ||
Line 336: | Line 343: | ||
and sizes for plasmid 2 and digests 1, 3, and 4, correct band and size for plasmid | and sizes for plasmid 2 and digests 1, 3, and 4, correct band and size for plasmid | ||
4<BR>C: Do more tests on plasmid 2 such as sequencing to determine if plasmid | 4<BR>C: Do more tests on plasmid 2 such as sequencing to determine if plasmid | ||
- | is carryover, Try different primers</P></BLOCKQUOTE></BLOCKQUOTE></BLOCKQUOTE></TD></TR></TABLE><P ALIGN="LEFT"> </P><P ALIGN="LEFT"><BR></P><iframe src="http://www.google.com/calendar/embed?src=aoqcbepvqdo8afcgih0d5mj1cc%40group.calendar.google.com&ctz=America/New_York" style="border: 0" width="900" height="600" frameborder="0" scrolling="no"></iframe> | + | is carryover, Try different primers</P></BLOCKQUOTE></BLOCKQUOTE></BLOCKQUOTE></TD></TR></TABLE><P ALIGN="LEFT"> </P><P ALIGN="LEFT"><BR></P> |
- | </div><div id="team-box"><h2>Advisors</h2><TABLE WIDTH="75%" BORDER="0"><TR><TD WIDTH="37%">Dr. | + | <br><br> |
- | Jingdong Tian</TD><TD WIDTH="63%">jtian@duke.edu </TD></TR><TR><TD WIDTH="37%">Faisal | + | <iframe src="http://www.google.com/calendar/embed?src=aoqcbepvqdo8afcgih0d5mj1cc%40group.calendar.google.com&ctz=America/New_York" style="border: 0" width="900" height="600" frameborder="0" scrolling="no"></iframe> |
- | Reza </TD><TD WIDTH="63%">faisal.reza@duke.edu</TD></TR></TABLE><br /> <h2>Students<BR></h2><TABLE WIDTH="75%" BORDER="0"><TR><TD>Andrew | + | </div> |
- | Ang </TD><TD>aangandover@gmail.com</TD></TR><TR><TD>Kevin Chien </TD><TD>kevin.chien@duke.edu | + | |
- | </TD></TR><TR><TD>Yaoyao Fu </TD><TD>yf21@duke.edu </TD></TR><TR><TD>Faith Kung | + | |
- | </TD><TD>fk8@duke.edu </TD></TR><TR><TD>Sahil Prasada </TD><TD>sahil.prasada@duke.edu | + | <div id="team-box"><h2>Advisors</h2><TABLE WIDTH="75%" BORDER="0"> |
- | </TD></TR><TR><TD>Jiayuan Quan </TD><TD>jq7@duke.edu </TD></TR><TR><TD>Nicholas | + | <TR> |
- | Tang </TD><TD>nicholas.tang@duke.edu </TD></TR><TR><TD>Peter Zhu </TD><TD>peter.zhu@duke.edu | + | <TD WIDTH="37%">Dr. Jingdong Tian</TD> |
- | </TD></TR> | + | <TD WIDTH="63%">jtian@duke.edu</TD></TR> |
- | + | <TR> | |
- | + | <TD WIDTH="37%">Faisal Reza </TD> | |
- | + | <TD WIDTH="63%">faisal.reza@duke.edu</TD></TR></TABLE><br /> <h2>Students<BR></h2><TABLE WIDTH="75%" BORDER="0"><TR><TD>Andrew Ang</TD><TD>aangandover@gmail.com</TD></TR> | |
- | + | <TR><TD>Kevin Chien </TD><TD>kevin.chien@duke.edu</TD></TR> | |
- | + | <TR><TD>Yaoyao Fu </TD><TD>yf21@duke.edu</TD></TR> | |
- | + | <TR><TD>Faith Kung</TD><TD>fk8@duke.edu</TD></TR> | |
- | + | <TR><TD>Sahil Prasada</TD><TD>sahil.prasada@duke.edu</TD></TR> | |
- | + | <TR><TD>Jiayuan Quan </TD><TD>jq7@duke.edu</TD></TR> | |
- | + | <TR><TD>Nicholas Tang</TD><TD>nicholas.tang@duke.edu</TD></TR> | |
- | + | <TR><TD>Peter Zhu </TD><TD>peter.zhu@duke.edu</TD></TR> | |
- | + | ||
- | + | <div id="about-box"> | |
- | + | <h1> About Duke University </h1> | |
+ | </div> | ||
</html> | </html> |
Revision as of 18:52, 17 October 2009
Home | Project | Notebook | Team |
Project
The process of high-throughput cloning is bottlenecked at the retriction and ligation stages. A combination of high costs, requirements for restriction site specific enzymes and general inefficiency of the process makes cloning on a large combinatorial gene library unviable. Circular Polymerase Extension Cloning (CPEC) addresses this issue by eliminating the need for restriction and ligation enzymes and thereby streamlining and condensing the procedure into the duration of 5 minutes. An extremely simple theory, CPEC piggybacks PCR in splicing genes. Figure 1 below outlines how CPEC may be used to insert a gene into a vector.
The gene insert is modified to have ends that overlap with the ends of the linearlized vector and both have similar melting temperatures. The insert and vector are placed within a PCR machine in the absence of primers. Denaturation separates the double-stranded insert and vector and the overlapping ends anneal. Polymerase extension mechanism is then used to complete the plasmid.
We will apply CPEC in the construction of a multi-component plasmid containing biobricks. Previous Duke iGEM projects have yielded the genes in a metabolic pathway that synthesizes poly(3HB-co-4HB), a biodegradable plastic, in E. coli. We will transform those genes into biobricks, with sticky ends, and efficiently combine them in a vector using CPEC.
|
Advisors
Dr. Jingdong Tian | jtian@duke.edu |
Faisal Reza | faisal.reza@duke.edu |
Students
Andrew Ang | aangandover@gmail.com |
Kevin Chien | kevin.chien@duke.edu |
Yaoyao Fu | yf21@duke.edu |
Faith Kung | fk8@duke.edu |
Sahil Prasada | sahil.prasada@duke.edu |
Jiayuan Quan | jq7@duke.edu |
Nicholas Tang | nicholas.tang@duke.edu |
Peter Zhu | peter.zhu@duke.edu |