Team:University of Washington/Modeling

From 2009.igem.org

(Difference between revisions)
(Replacing page with 'delete this page please')
 
Line 1: Line 1:
-
{| style="color:Gold;background-color:#500050;border: none" cellpadding="4" cellspacing="5" border="5" width="99%" align="center"
+
delete this page please
-
!align="center";style="border: none;" |[[Image:WashingtonColorSeal-21-clip.gif|50px]]
+
-
!align="center"; style="border: #6b0c6a inset 3px;" |[[Team:University_of_Washington|<font color="gold">Home</font>]]
+
-
!align="center"; style="border: #6b0c6a outset 3px;" |[[Team:University_of_Washington/Team|<font color="gold">The Team</font>]]
+
-
!align="center"; style="border: #6b0c6a outset 3px;" |[[Team:University_of_Washington/Project|<font color="gold">The Project</font>]]
+
-
!align="center"; style="border: #6b0c6a outset 3px;" |[[Team:University_of_Washington/Modeling|<font color="gold">Modeling</font>]]
+
-
!align="center"; style="border: #6b0c6a outset 3px;" |[[Team:University_of_Washington/Notebook|<font color="gold">Notebook</font>]]
+
-
!align="center"; style="border: #6b0c6a outset 3px;" |[[Team:University_of_Washington/Protocols|<font color="gold">Protocols</font>]]
+
-
!align="center"; style="border: #6b0c6a outset 3px;" |[[Team:University_of_Washington/Parts|<font color="gold">Parts Submitted <br>to the Registry</font>]]
+
-
!align="center"; style="background-color:#03943d;border: #6b0c6a outset 3px;" |[[Team:University_of_Washington/Measurement Kit|<font color="gold">Measurement Kit</font>]]
+
-
!align="center"; style="background-color:#c42317;border: #6b0c6a outset 3px;" |[[Team:University_of_Washington/SeToB|<font color="gold">SeToB</font>]]
+
-
!align="center"; style="border: #6b0c6a outset 3px;" |[[Team:University_of_Washington/Safety|<font color="gold">Safety</font>]]
+
-
|}
+
-
 
+
-
{|style="color:Gold;background-color:#FFdd00; border: none" cellpadding="5" cellspacing="5" border="0" width="99%" align="center"
+
-
 
+
-
<html>
+
-
<head>
+
-
<style>
+
-
#globalWrapper {
+
-
margin: 0px;
+
-
padding: 0px;
+
-
background-color:#500050;
+
-
}
+
-
#content{
+
-
background:#FFdd00;
+
-
border-left-color:#FFdd00;
+
-
border-right-color:#FFdd00;
+
-
}
+
-
#footer-box {
+
-
border-top-color:#FFdd00;
+
-
border-right-color:#FFdd00;
+
-
border-bottom-color:#FFdd00;
+
-
border-left-color:#FFdd00;
+
-
background:#FFdd00;
+
-
                }
+
-
        </style>
+
-
</head>
+
-
</html>
+
-
 
+
-
==Mathematical Modeling==
+
-
===Alpha===
+
-
====Problem====
+
-
Given the following construction and point ''p'', or (''x'',''y'',''z'') find the angles ''θ<sub>1</sub>'', ''θ<sub>2</sub>'', and ''θ<sub>3</sub>''.
+
-
 
+
-
Note that positive ''z'' is the down direction.
+
-
 
+
-
====Constants====
+
-
*''TR''
+
-
**Top radius
+
-
*''BR''
+
-
**Bottom radius
+
-
*''L''
+
-
**Linkage
+
-
*''CA''
+
-
**Control Arm
+
-
*''φ<sub>1</sub>'' and ''φ<sub>2</sub>''
+
-
**Two angles
+
-
 
+
-
====Construction====
+
-
From the top to the bottom:
+
-
*A circle centered at the origin with radius ''TR'', named ''O''
+
-
*Make three lines ''A<sub>1</sub>'', ''A<sub>2</sub>'', and ''A<sub>3</sub>'' such that:
+
-
**The lines ''A<sub>x</sub>'' are perpendicular to a tangent of ''O'' and a radius of ''O'',
+
-
**The angle between the radii of ''A<sub>1</sub>'' and ''A<sub>2</sub>'' is ''φ<sub>1</sub>'', and
+
-
**The angle between the radii of ''A<sub>2</sub>'' and ''A<sub>3</sub>'' is ''φ<sub>2</sub>''.
+
-
*Make a circle centered at point ''p'' with radius ''BR'', named ''P''
+
-
*Find three points ''P<sub>1</sub>'', ''P<sub>2</sub>'', and ''P<sub>3</sub>'' such that:
+
-
**They are on the circumference of ''P'',
+
-
**The angle between the radius which touches ''P<sub>1</sub>'' and the radius that touches ''P<sub>2</sub>'' is ''φ<sub>1</sub>'',
+
-
**The angle between the radius which touches ''P<sub>2</sub>'' and the radius that touches ''P<sub>3</sub>'' is ''φ<sub>2</sub>'',
+
-
**The ray from the center of ''P'' to ''P<sub>x</sub>'' is parallel to the ray from the center of ''O'' to the point which is on ''A<sub>x</sub>'' and ''O'' 's circumference, for all ''x''.
+
-
*Construct three line segments ''CA<sub>1</sub>'', ''CA<sub>2</sub>'', and ''CA<sub>3</sub>'' such that:
+
-
**''CA<sub>x</sub>'' is in the same plane as ''A<sub>x</sub>'', for all ''x'', and
+
-
**The angle between ''CA<sub>x</sub>'' and ''A<sub>x</sub>'' is ''θ<sub>x</sub>'', for all ''x''.
+
-
*The distance between ''P<sub>x</sub>'' and the end point of ''CA<sub>x</sub>'' that is not on ''A<sub>x</sub>'' is ''L'', for all ''x''.
+
-
 
+
-
====Solution====
+
-
#Note that the control arms can only move in a circle, while linkage can move in a sphere.
+
-
#We will calculate ''θ<sub>1</sub>'' first, which only involves the points, circles and lines ''p'', ''CA<sub>1</sub>'', ''A<sub>1</sub>'', and ''P<sub>1</sub>''.
+
-
#Find the plane where ''CA<sub>1</sub>'' 's circle resides in. Use it to cut the sphere around ''P<sub>1</sub>''. For future reference, call ''CA<sub>1</sub>'' 's circle ''C<sub>1</sub>'' and the circle resulting from the cut ''C<sub>2</sub>''
+
-
#Define ''x<sub>o<sub>1</sub></sub>'', for x offset, for the difference in the ''x'' coordinates of the center of ''C<sub>1</sub>'' and the point ''P<sub>1</sub>''.
+
-
#*''x<sub>o<sub>1</sub></sub> = TR - (BR + x)''
+
-
#*''x<sub>o<sub>1</sub></sub> = TR - BR - x''
+
-
#Define ''D<sub>1</sub>'' to be the distance between the center of ''C<sub>1</sub>'' and ''C<sub>2</sub>''. It will also be the line connecting the centers.
+
-
#*''D<sub>1</sub> = sqrt(x<sub>1</sub><sup>2</sup> + z<sup>2</sup>)''
+
-
#Obviously, ''D<sub>1</sub>'', ''CA<sub>1</sub>'', and linkage form a triangle. The angle between ''CA<sub>1</sub>'' and ''D<sub>1</sub>'' is a close approximation to ''θ<sub>1</sub>'', but it is not exact. We will call this angle ''θ<sub>1<sub>1</sub></sub>''. We use the law of cosines to calculate ''θ<sub>1<sub>1</sub></sub>''.
+
-
#*''L<sup>2</sup> = CA<sup>2</sup> + D<sup>2</sup> - CA * D * cos(θ<sub>1<sub>1</sub></sub>)''<br><br>
+
-
#*''θ<sub>1<sub>1</sub></sub> = cos<sup>-1</sup>((D<sup>2</sup> + CA<sup>2</sup> - L<sup>2</sup>)/(2*D*CA))''<br><br>
+
-
#One endpoint of ''D<sub>1</sub>'' is on ''A<sub>1</sub>''. Thus, we can make another triangle, and the angle between ''D<sub>1</sub>'' and ''A<sub>1</sub>'' is the difference between ''θ<sub>1</sub>'' and ''θ<sub>1<sub>1</sub></sub>''. We will call this angle ''θ<sub>1<sub>2</sub></sub>''. If we have the length of the side on ''A<sub>1</sub>'' be ''z'', then the last side will be ''x<sub>o</sub>'' and the triangle will be a right angle triangle. Since only ''x<sub>o<sub>1</sub></sub>'' changes sign in the good interval, we should use a trigonometric function that involves ''x<sub>o</sub>'' in the numerator. Thus,
+
-
#*''θ<sub>1<sub>2</sub></sub> = sin<sup>-1</sup>(x<sub>o<sub>1</sub></sub>/D<sub>1</sub>)''<br><br>
+
-
#*''θ<sub>1</sub> = cos<sup>-1</sup>((D<sup>2</sup> + CA<sup>2</sup> - L<sup>2</sup>)/(2*D*CA)) - sin<sup>-1</sup>(x<sub>o<sub>1</sub></sub>/D<sub>1</sub>)''
+
-
#You just have to rotate the model ''φ<sub>1</sub>'' degrees counterclockwise for ''θ<sub>2</sub>'', and another ''φ<sub>2</sub>'' degrees for ''θ<sub>3</sub>'' using the two dimensional rotational matrixes
+
-
    {''cos(φ<sub>2</sub>),-sin(φ<sub>2</sub>)''}
+
-
''R<sub>1</sub>''={                }
+
-
    {''sin(φ<sub>2</sub>)  cos(φ<sub>2</sub>)''}
+
-
 
+
-
    {''cos(φ<sub>3</sub>) -sin(φ<sub>3</sub>)''}
+
-
''R<sub>2</sub>''={                }
+
-
    {''sin(φ<sub>3</sub>)  cos(φ<sub>3</sub>)''}
+

Latest revision as of 04:02, 18 October 2009

delete this page please