Team:METU-Gene/Collagen Sponge

From 2009.igem.org

(Difference between revisions)
(The release rate of bioactive hEGF from crosslinking collagen sponges ==)
 
(36 intermediate revisions not shown)
Line 1: Line 1:
-
== The release rate of bioactive hEGF from crosslinking collagen sponges == ==
+
<html>
 +
<body style="background-color:#006380">
 +
</html>
 +
 +
<!-- ***** New entry ***** -->
 +
<div class="main_item"> 
 +
<h2>The release rate of bioactive hEGF from crosslinking collagen sponges</h2>
 +
<table>
 +
<tr>
 +
<td style="padding-right:20px;">
 +
<html><div align="center" style="padding-left: 66px; padding-top: 8px;"><img style="border: 0px solid ; width: 500px; height: 250px;" alt="w6" src="https://static.igem.org/mediawiki/2009/9/99/Fromgltn.jpg"></a></div></html>
 +
</td>
 +
<td>
 +
<p style="font-size:110%; color:#576f91; font-family:georgia,serif;">
<br>The purpose of this study was to prepare
<br>The purpose of this study was to prepare
recombinant human epidermal growth factor (rhEGF)
recombinant human epidermal growth factor (rhEGF)
Line 7: Line 20:
the effects of different types of crosslinked collagen
the effects of different types of crosslinked collagen
sponges as platforms for the controlled release of rhEGF.
sponges as platforms for the controlled release of rhEGF.
 +
 +
</p>
 +
 +
</td>
 +
</tr>
 +
</table>
 +
</div> <!-- close main item -->
<br>The microstructure and the drug release rates of collagen
<br>The microstructure and the drug release rates of collagen
Line 15: Line 35:
conditions.
conditions.
-
<br>a good correlation was obtained for
+
<br>A good correlation was obtained for
in vitro release rates of rhEGF using the power model. The
in vitro release rates of rhEGF using the power model. The
crosslinked rhEGF collagen sponges showed a successful
crosslinked rhEGF collagen sponges showed a successful
Line 36: Line 56:
concentration at the wound site for a certain period of time
concentration at the wound site for a certain period of time
has become vital in the application of EGF. Indeed, we increased this continuous exposures by using Quaroum Sensing Mechanism of E.coli.
has become vital in the application of EGF. Indeed, we increased this continuous exposures by using Quaroum Sensing Mechanism of E.coli.
 +
 +
 +
<br>Collagen is a major constituent of the connective tissue
 +
and is potentially a highly useful biomaterial. It has characteristics
 +
that are suitable in medical application, such as
 +
'''biodegradability''' and weak antigenicity, and it has been
 +
used in resorbable surgical sutures, hemostatic agents, and
 +
wound dressings for many years.
 +
 +
<br>An in vitro controlled release study was conducted
 +
to investigate the mechanism of recombinant human
 +
epidermal growth factor (rhEGF) release from the different
 +
degree of crosslinked collagen sponges.
 +
 +
== Characterization of the rhEGF-collagen sponges ==
 +
 +
<br align="center">[1]'''Determination of the degree of crosslinking'''
 +
 +
The crosslinking degree could then be obtained from the
 +
differences between the absorbance values before and after
 +
the crosslinking. The equation is as follows:
 +
 +
https://static.igem.org/mediawiki/2009/9/9b/Formul1.jpg
 +
 +
where s is the sample and ncl is non-crosslinked.
 +
 +
<br align="center">[2]'''Water-binding capacity'''
 +
 +
The water uptake of the collagen sponges was calculated using
 +
the following equation:
 +
 +
https://static.igem.org/mediawiki/2009/a/a3/Formul2.jpg
 +
 +
where Wd is the weight of the dry sponge and Ws is the
 +
weight of the swollen sponge.
 +
 +
<br align="center">[3]'''Release kinetics'''
 +
 +
To determine the possible release mechanism, drug release
 +
from collagen sponges was fitted to the following power
 +
model:
 +
 +
https://static.igem.org/mediawiki/2009/6/64/Formul3.jpg
 +
 +
where Mt/M is the fractional drug release percentage at
 +
time t, and k is a constant related to the properties of the
 +
drug delivery system and n is the diffusional exponent
 +
which characterizes the drug transport mechanism.
 +
 +
 +
 +
== Recombinant hEGF release from collagen sponges ==
 +
 +
Figure 1 shows the release profiles of rhEGF from collagen
 +
sponge at 37 �C in PBS with/without collagenase solution.
 +
 +
https://static.igem.org/mediawiki/2009/8/8e/Figure1.jpg
 +
 +
Chih-Hui Yang in his study supposed that
 +
under the in vitro non-degradation conditions, rhEGF was
 +
initially released by diffusion. Generally speaking, since
 +
collagen is enzymatically degraded, low final release values
 +
are expected in the absence of any enzymes. Therefore,
 +
collagenase was employed for the model of the in vitro
 +
rhEGF release study.
 +
In project, this case is also valuable.
 +
 +
<br>Therefore, the influence of the types and the
 +
concentrations of the crosslinking agents and the preparation
 +
conditions on the structures and characteristics of
 +
collagen sponges, and the rhEGF release from collagen sponges were compared in his study.
 +
 +
<br>Three different
 +
types of crosslinking agents, GTA, genipin and ECD were
 +
used to prepare crosslinked collagen sponges. The rhEGF
 +
release patterns from collagen sponges are shown in Figure 2.
 +
 +
https://static.igem.org/mediawiki/2009/b/b0/Figure2.jpg
 +
 +
The drug release rate from crosslinked collagen sponges
 +
treated with EDC was the fastest, followed by collagen
 +
sponges treated with genipin and GTA, respectively. The
 +
EDC crosslinked collagen showed no release control effect,
 +
which was probably due to the fact that EDC increased the
 +
water-solubility and lowered the viscosity of collagen (data
 +
not shown). GTA crosslinked collagen showed the most
 +
potent release control effect than the other two (EDC and
 +
genipin). '''However, since we want controlled and orderly release system which will be improved our transgenic bacteria, we used genipin for formation our cellulose Wound Dressing layer in three different types of crosslinking agents, GTA, genipin and ECD.'''
 +
 +
 +
 +
== Preparation of Collagen Sponge ==
 +
 +
 +
<br>• Solve 48,8 µg collagen in 6,5 ml 0,05 M acetic acid to prepare 0,75 % collagen solution (the final concentration of collagen solution is 7,5 mg/ml)
 +
 +
                                  https://static.igem.org/mediawiki/2009/6/62/11.jpg
 +
 +
<br>• Overnight the collagen solution at 350 C with magnetic heater to dissolve the collagen in acetic acid completely
 +
 +
                                  https://static.igem.org/mediawiki/2009/1/13/22.jpg
 +
 +
<br>• Dissolve 10 mg genipin (cross-linker for collagen) in 1 ml 70 % ethanol (the concentration of genipin solution is 1 %)
 +
<br>• Add 650 µl genipin solution to the collagen solution (final concentration of genipin solution in the collagen solution is 0,1 %)
 +
<br>• Place 1 ml prepared final solution to well
 +
 +
                                  https://static.igem.org/mediawiki/2009/d/da/33.jpg
 +
 +
<br>• Wait the prepared solution in the wells for 48 hours at room temperature
 +
 +
                                                  https://static.igem.org/mediawiki/2009/9/98/44.jpg
 +
 +
<br>• Keep the wells at -800 C at 24 hour
 +
<br>• Lyophilize the frozen solution
 +
 +
 +
                                    https://static.igem.org/mediawiki/2009/8/86/55.jpg
 +
 +
== Conclusion ==
 +
 +
<br>Crosslinked rhEGF-collagen sponges can be useful for
 +
controlling the release of rhEGF. Results have shown that
 +
upon increasing the amount of genipin or GTA or EDC, the microstructure of
 +
collagen sponges becomes more rigid, and the hydrophilicity
 +
is reduced, resulting in a decreased drug release rates
 +
and an increased water uptake. A good correlation was
 +
obtained for in vitro release rates of rhEGF from crosslinking
 +
collagen sponges using the power model.
 +
 +
 +
 +
== References ==
 +
 +
<br>[1] C. H. YANG, Evaluation of the release rate of bioactive recombinant human
 +
epidermal growth factor from crosslinking collagen sponges
 +
 +
Received: 3 July 2006 / Accepted: 27 July 2007 / Published online: 4 October 2007
 +
� Springer Science+Business Media, LLC 2007
 +
 +
<br>[2] J. M. BOWER, R. CAMBLE, H. GREGORY, E. L. GERRING
 +
and I. R. WILLSHIRE, Experientia 31 (1975) 825
 +
 +
<br>[3] G. L. BROWN, G. SCHULTZ, J. R. BRIGHTWELL and G. R.
 +
TOBIN, Surg. Forum. 35 (1984) 565
 +
 +
<br>[4] G. L. BROWN, L. CURTSINGER, J. R. BRIGHTWELL, D. M.
 +
ACKERMAN, G. R. TOBIN, H. C. POLK, C. GEORGENASCIMENTO,
 +
P. VALENZUELA and G. S. SCHULTZ, J.
 +
Exp. Med. 163 (1986) 1319
 +
 +
<br>[5] G. L. BROWN, L. B. NANNEY, J. GRIFFEN, A. B. CRAMER,
 +
J. M. YANCEY, I. L. CURTSINGER, L. HOLTZIN, G. S.
 +
SCHULTZ, M. J. JURKIEWICZ and J. B. LYNCH, N. Engl. J.
 +
Med. 321 (1989) 76
 +
 +
<br>[6] A. R. C. LEE, Y. SUZUKI, K. H. JUNG, J. NISHIGAKI, Y.
 +
HAMAI and A. SHIGEMATSU, Proc. Control. Release Soc. 23
 +
(1996) 325
 +
 +
<br>[7] P. L. RITGER and N. S. PEPPAS, J. Control. Release 5 (1987)
 +
37
 +
 +
<html><div align="center">
 +
<a href="https://2009.igem.org/Team:METU-Gene/Gelatin_Sponge"><img src="https://static.igem.org/mediawiki/2009/2/2c/Gggglltn.jpg"
 +
    style="width:30%; height:30%; border:0px solid #aaa; margin:-10px 5px 10px 15px;">
 +
 +
<div  align="center" style="width: 700px; margin-left: 20px; float:left;"> <html><!-- main content div --></html>
 +
 +
<html><div align="center" style="margin:15px 0px 0px 0px">
 +
<a href="https://2009.igem.org/Team:METU-Gene"><img style="border: 0px solid ; width: 100px; height: 100px;" alt="w7" src="https://static.igem.org/mediawiki/2009/5/5f/Home-icon.jpg"></a></div>
 +
 +
<html>

Latest revision as of 21:01, 19 October 2009


Contents

The release rate of bioactive hEGF from crosslinking collagen sponges

w6


The purpose of this study was to prepare recombinant human epidermal growth factor (rhEGF) collagen sponges for topical applications and investigate the effects of different types of crosslinked collagen sponges as platforms for the controlled release of rhEGF.


The microstructure and the drug release rates of collagen sponges were modified through treatment with different types (glutaraldehyde (GTA), genipin and 1-ethyl-3- (3-dimethylaminopropyl)carbodiimide (EDC)), different concentrations of crosslinking agents and various preparation conditions.


A good correlation was obtained for in vitro release rates of rhEGF using the power model. The crosslinked rhEGF collagen sponges showed a successful delivery of rhEGF in bioactive form to stimulate cell proliferation.


In addition, EGF can inhibit gastric acid secretions in the stomach, enhance the proliferation and keratinization of epithelial tissues and accelerate wound healing. Due to its wound healing properties, EGF is an attractive candidate for a therapeutic drug. Studies have demonstrated that topical applications of EGF promote wound healing in healthy and impaired healing animals.


Since Carpenter and co-workers first reported that for a mitogenic effect of EGF, a continuous exposure of the target cells to EGF was required for a minimum of 6–12 h, maintaining an effective topical concentration at the wound site for a certain period of time has become vital in the application of EGF. Indeed, we increased this continuous exposures by using Quaroum Sensing Mechanism of E.coli.



Collagen is a major constituent of the connective tissue and is potentially a highly useful biomaterial. It has characteristics that are suitable in medical application, such as biodegradability and weak antigenicity, and it has been used in resorbable surgical sutures, hemostatic agents, and wound dressings for many years.


An in vitro controlled release study was conducted to investigate the mechanism of recombinant human epidermal growth factor (rhEGF) release from the different degree of crosslinked collagen sponges.

Characterization of the rhEGF-collagen sponges


[1]Determination of the degree of crosslinking

The crosslinking degree could then be obtained from the differences between the absorbance values before and after the crosslinking. The equation is as follows:

Formul1.jpg

where s is the sample and ncl is non-crosslinked.


[2]Water-binding capacity

The water uptake of the collagen sponges was calculated using the following equation:

Formul2.jpg

where Wd is the weight of the dry sponge and Ws is the weight of the swollen sponge.


[3]Release kinetics

To determine the possible release mechanism, drug release from collagen sponges was fitted to the following power model:

Formul3.jpg

where Mt/M is the fractional drug release percentage at time t, and k is a constant related to the properties of the drug delivery system and n is the diffusional exponent which characterizes the drug transport mechanism.


Recombinant hEGF release from collagen sponges

Figure 1 shows the release profiles of rhEGF from collagen sponge at 37 �C in PBS with/without collagenase solution.

Figure1.jpg

Chih-Hui Yang in his study supposed that under the in vitro non-degradation conditions, rhEGF was initially released by diffusion. Generally speaking, since collagen is enzymatically degraded, low final release values are expected in the absence of any enzymes. Therefore, collagenase was employed for the model of the in vitro rhEGF release study. In project, this case is also valuable.


Therefore, the influence of the types and the concentrations of the crosslinking agents and the preparation conditions on the structures and characteristics of collagen sponges, and the rhEGF release from collagen sponges were compared in his study.


Three different types of crosslinking agents, GTA, genipin and ECD were used to prepare crosslinked collagen sponges. The rhEGF release patterns from collagen sponges are shown in Figure 2.

Figure2.jpg

The drug release rate from crosslinked collagen sponges treated with EDC was the fastest, followed by collagen sponges treated with genipin and GTA, respectively. The EDC crosslinked collagen showed no release control effect, which was probably due to the fact that EDC increased the water-solubility and lowered the viscosity of collagen (data not shown). GTA crosslinked collagen showed the most potent release control effect than the other two (EDC and genipin). However, since we want controlled and orderly release system which will be improved our transgenic bacteria, we used genipin for formation our cellulose Wound Dressing layer in three different types of crosslinking agents, GTA, genipin and ECD.


Preparation of Collagen Sponge


• Solve 48,8 µg collagen in 6,5 ml 0,05 M acetic acid to prepare 0,75 % collagen solution (the final concentration of collagen solution is 7,5 mg/ml)

                                  11.jpg


• Overnight the collagen solution at 350 C with magnetic heater to dissolve the collagen in acetic acid completely

                                  22.jpg


• Dissolve 10 mg genipin (cross-linker for collagen) in 1 ml 70 % ethanol (the concentration of genipin solution is 1 %)
• Add 650 µl genipin solution to the collagen solution (final concentration of genipin solution in the collagen solution is 0,1 %)
• Place 1 ml prepared final solution to well

                                  33.jpg


• Wait the prepared solution in the wells for 48 hours at room temperature

                                                 44.jpg


• Keep the wells at -800 C at 24 hour
• Lyophilize the frozen solution


                                   55.jpg

Conclusion


Crosslinked rhEGF-collagen sponges can be useful for controlling the release of rhEGF. Results have shown that upon increasing the amount of genipin or GTA or EDC, the microstructure of collagen sponges becomes more rigid, and the hydrophilicity is reduced, resulting in a decreased drug release rates and an increased water uptake. A good correlation was obtained for in vitro release rates of rhEGF from crosslinking collagen sponges using the power model.


References


[1] C. H. YANG, Evaluation of the release rate of bioactive recombinant human epidermal growth factor from crosslinking collagen sponges

Received: 3 July 2006 / Accepted: 27 July 2007 / Published online: 4 October 2007 � Springer Science+Business Media, LLC 2007


[2] J. M. BOWER, R. CAMBLE, H. GREGORY, E. L. GERRING and I. R. WILLSHIRE, Experientia 31 (1975) 825


[3] G. L. BROWN, G. SCHULTZ, J. R. BRIGHTWELL and G. R. TOBIN, Surg. Forum. 35 (1984) 565


[4] G. L. BROWN, L. CURTSINGER, J. R. BRIGHTWELL, D. M. ACKERMAN, G. R. TOBIN, H. C. POLK, C. GEORGENASCIMENTO, P. VALENZUELA and G. S. SCHULTZ, J. Exp. Med. 163 (1986) 1319


[5] G. L. BROWN, L. B. NANNEY, J. GRIFFEN, A. B. CRAMER, J. M. YANCEY, I. L. CURTSINGER, L. HOLTZIN, G. S. SCHULTZ, M. J. JURKIEWICZ and J. B. LYNCH, N. Engl. J. Med. 321 (1989) 76


[6] A. R. C. LEE, Y. SUZUKI, K. H. JUNG, J. NISHIGAKI, Y. HAMAI and A. SHIGEMATSU, Proc. Control. Release Soc. 23 (1996) 325


[7] P. L. RITGER and N. S. PEPPAS, J. Control. Release 5 (1987) 37