Team:HKUST/Result1

From 2009.igem.org

(Difference between revisions)
 
(9 intermediate revisions not shown)
Line 18: Line 18:
<li><a href="https://2009.igem.org/Team:HKUST">Home</a></li>
<li><a href="https://2009.igem.org/Team:HKUST">Home</a></li>
<li><a href="https://2009.igem.org/Team:HKUST/Team">Our Team</a></li>
<li><a href="https://2009.igem.org/Team:HKUST/Team">Our Team</a></li>
-
<li><a href="https://2009.igem.org/Team:HKUST/Project">Project description</a></li>
+
<li><a href="https://2009.igem.org/Team:HKUST/Project">Project Description</a></li>
<b>
<b>
Line 25: Line 25:
</span>
</span>
</b>
</b>
-
<li><a href="https://2009.igem.org/Team:HKUST/OdorantSensoring">Odorant sensoring</a></li>
+
<li><a href="https://2009.igem.org/Team:HKUST/OdorantSensing">Odorant Sensing</a></li>
-
<li><a href="https://2009.igem.org/Team:HKUST/AttranctantProduction">Attranctant production</a></li>
+
<li><a href="https://2009.igem.org/Team:HKUST/AttractantProduction">Attractant Production</a></li>
-
<li><a href="https://2009.igem.org/Team:HKUST/ToxinProduction">Toxin production</a></li>
+
<li><a href="https://2009.igem.org/Team:HKUST/ToxinProduction">Toxin Production</a></li>
<b>
<b>
Line 37: Line 37:
<li><a href="https://2009.igem.org/Team:HKUST/Lab Notebook">Lab Notebook</a></li>
<li><a href="https://2009.igem.org/Team:HKUST/Lab Notebook">Lab Notebook</a></li>
<li><a href="https://2009.igem.org/Team:HKUST/Parts">Parts Submitted </a></li>
<li><a href="https://2009.igem.org/Team:HKUST/Parts">Parts Submitted </a></li>
-
<li><a href="https://2009.igem.org/Team:HKUST/Protocols">Protocol list</a></li>
+
<li><a href="https://2009.igem.org/Team:HKUST/Protocols">Protocol List</a></li>
-
<li><a href="https://2009.igem.org/Team:HKUST/Resourses">Other resources</a></li>
+
<li><a href="https://2009.igem.org/Team:HKUST/Resourses">Other Resources</a></li>
</ul>
</ul>
</div>
</div>
Line 44: Line 44:
<ul>
<ul>
<li><a href="https://2009.igem.org/Team:Gallery">Gallery</a></li>
<li><a href="https://2009.igem.org/Team:Gallery">Gallery</a></li>
-
<li><a href="https://2009.igem.org/Team:Consolidation">Consolidation</a></li>
+
<li><a href="https://2009.igem.org/Team:Biosafety">Biosafety</a></li>
<li><a href="https://2009.igem.org/Team:Acknowledgement">Acknowledgement</a></li>
<li><a href="https://2009.igem.org/Team:Acknowledgement">Acknowledgement</a></li>
</ul>
</ul>
Line 50: Line 50:
</div>
</div>
<div id="rightxx">
<div id="rightxx">
 +
<div class="contentodS_re"> <h3>a</h3>
 +
</div>
<div class="contentxx">
<div class="contentxx">
-
<h3>Welcome</h3>
 
<p>Fusion Receptor Construction </p>
<p>Fusion Receptor Construction </p>
-
   We have successfully constructed the chimeric receptor cassette contains the N- and C- terminals of the rat OR RI7, flanking the TM2-TM7 ligand-binding domain of the C. elegans OR Odr-10 using PCR, and have cloned it into the  yeast expression vector pESC-His. Also, we have successfully construct the chimeric receptor tagged with GFP, RI7 tagged with FLAG as well as GFP alone. The agarose gel electrophoresis pictures showing the correct sizes after enzyme digestion of pESC-Fusion-FLAG, pESC-Fusion-GFP, pESC-RI7-FLAG and pESC-GFP are shown in Figure 10.</p>
+
   We have successfully constructed the chimeric receptor using PCR, and have cloned it into the  yeast expression vector pESC-His. Also, we have successfully constructed the chimeric receptor tagged with GFP, RI7 tagged with FLAG, as well as GFP alone inserted into the vector. Figure 10 shows the agarose gel electrophoresis pictures, highlighting the correct sizes after enzyme digestion of pESC-Fusion-FLAG and pESC-RI7-FLAG.</p><br><br>
-
Fig 10. Agarose gel electrophoresis pictures showing the correct size after enzyme digestion of pESC-Fusion-FLAG, pESC-Fusion-GFP, pESC-RI7-FLAG and pESC-GFP.</p>
+
-
<p>Chimeric Receptor Membrane Localization Assay</p>
+
-
We have tested the localization of fusion receptor onto the yeast membrane. We have used the constructs pESC-Fusion-GFP and pESC-GFP to carry out the assay. After induction of galactose for 45 minutes, in yeast transformed with pESC-Fusion-GFP, the GFP signal can be seen clearly around the cell membrane, forming a smooth green circle; while no induction or in pESC-GFP cells there is in no such “green circle” (Figure 11). Though there is some GFP expression in the not induced cells and cells of pESC-GFP. This means that the Gal1 promoter is a little leaky, which has been experimentally detected in another study8. After induction for more than 1.5 hours, overexpressed chimeric receptors would aggregate on the membrane, forming intense green patches (Figure 12). The above results show that our chimeric receptor can indeed localize to the yeast membrane. </p>
+
-
Fig 9. Membrane localization test using fluorescence microscopy. The upper picture shows GFP and the lower picture shows the live cells. (a) is the yeast transformed with pESC-Fusion-GFP induced with galactose for 45mins. (b) is the yeast transformed with pESC-Fusion-GFP not induced with galactose. (c) is the yeast transformed with pESC- GFP induced with galactose for 45mins.</p>
+
-
Fig 10. Long time induction of galactose causes overexpression of chimeric receptor so that they aggregate to the membrane forming strong green patches. The left picture shows GFP and the right picture shows live cells.  </p>
+
-
<p>Chimeric Receptor Functioning Assay</p>
+
-
Part 1<br>
+
-
  We have done receptor functioning assay using diacetyl and hexanal to induce yeasts transformed with pESC-Fusion-FLAG, pESC-RI7-FLAG and pESC vector alone. Though we have not had the reporter pRS426-FUS1P-GFP-FUS1T ready, we could still carry out this assay using the phenomenon of cell cycle arrest at G1 phase as a “reporter”. As a result, we first induced the cells with galactose and ligands diacetyl and hexanal; then we analysed cell DNA contents using FACS assay. The results are shown as follows:<br>
+
-
Part 2<br>
+
-
  In this part, we need to first manipulate the yeast strain we are using, which is to knock out FAR1 and GPA1 gene. ……..We have successfully knocked out FAR1 gene and GPA1 gene. <br>
+
 +
<img src="http://igem2009hkust.fileave.com/wiki/Group1/figure13.jpg " width=529; height=269 />
 +
</p>
 +
<br><br>
 +
<p>Chimeric Receptor Membrane Localization Assay</p><br>
 +
We have tested the localization of the chimeric receptor onto the yeast membrane. We have used the constructs pESC-Fusion-GFP and pESC-GFP to carry out the assay. After induction of galactose for 45 minutes, yeast transformed with pESC-Fusion-GFP shows clear GFP signal around the cell membrane, forming a smooth green halo; whilst non-induced cells show no such green halo (Figure 11).  Nevertheless, there is some GFP expression in the non-induced cells, which means that the GAL1 promoter is somewhat leaky. This has been experimentally detected in another study[8]. After induction for more than 1.5 hours, over-expression of chimeric receptors results in stronger GFP intensity (Figure 11(b)). The above results show that our chimeric receptor can indeed localize to the yeast membrane. </p><br><br>
 +
 +
<img src="http://igem2009hkust.fileave.com/wiki/Group1/figure14.jpg " width=600; height=530 />
<br>
<br>
 +
<br>
 +
 +
<p>Chimeric Receptor Functional Assay</p>
 +
<b>Part 1</b><br><br>
 +
  We have performed receptor functional assay, using diacetyl and hexanal to induce yeasts transformed with pESC-Fusion-FLAG, pESC-RI7-FLAG and pESC empty vector. Although we have not had the reporter pRS426-FUS1P-GFP-FUS1T ready, we could still carry out this assay using the phenomenon of cell cycle arrest at G1 phase as a “reporter”. <br><br>
 +
  As a result, we first induced the cells with galactose; then we used the ligands diacetyl(5mM) and hexanal(5mM) to induce yeast cells; finally we analyzed cell DNA contents by FACS assay. The results are shown as follows (Figure 12).<br><br>
 +
 +
<img src="http://igem2009hkust.fileave.com/wiki/Group1/figure15.jpg " width=600; height=475 />
 +
<br>
 +
  As we can see, compared with the control in which no ligands were added, RI7 FACS shows that the majority of cells stop at G1 phase after 2 hours of induction with its ligand hexanal; the chimeric receptor FACS also shows cell cycle arrest at G1 phase for the majority of the population after induction with diacetyl for 2 hours. We could not see the whole population arrested at G1 phase, which is as we have expected because we are using the yeast endogenous GPA1 subunit to couple with RI7-C terminus, and this coupling is not as efficient as Gαolf, according to literature. We can also conclude that RI7 and our chimeric receptor have similar efficiency in sensing and coupling, because the number of cells arrested at G1 phase and the response time to the ligands (before 2 hours) are similar for both. <br><br>
 +
    In sum, we can say that our chimeric receptor is functioning as a ligand sensing receptor for the volatile molecule diacetyl. <br><br>
 +
 +
 +
<b>Part 2</b><br><br>
 +
  In this part, we need to first manipulate the yeast strain we are using by knocking out the FAR1 and GPA1 genes. <br><br>
 +
  First we need to knock out the FAR1 gene, so that cells will not arrest at G1 phase after ligand binding. The following result shows successful FAR1 deletion (Figure13). After α factor induction, wild type cells display mating phenotype “shmoo”; FAR1 knock-out strain only shows normal yeast phenotypes “budding”.
 +
<br><br>
 +
 +
<img src="http://igem2009hkust.fileave.com/wiki/Group1/figure16.jpg " width=584; height=291 />
 +
 +
<br><br>
 +
Then we proceeded to delete the GPA1 gene from the △FAR1 strain using the same method. This time, as there are no particular phenotypes of the deletion strain, we used PCR to confirm the successful knock-out strain. By carefully designing different sets of primers, we were able to identify the colony that showed proper bands as we have expected. <br><br>
 +
  To conclude, we have successfully knocked out the FAR1 gene and the GPA1 gene. So far, we have made our desired strain to functionally express our engineered odorant sensing chimeric receptor. <br><br>
 +
 +
 +
 +
 +
<li><a href="https://2009.igem.org/Team:HKUST/Back1">Background</a></li>
<li><a href="https://2009.igem.org/Team:HKUST/Back1">Background</a></li>
-
<li><a href="https://2009.igem.org/Team:HKUST/Group1">Experimental design</a></li>
+
<li><a href="https://2009.igem.org/Team:HKUST/Group1">Experimental Design</a></li>
-
<li><a href="https://2009.igem.org/Team:HKUST/Part1">Parts design</a></li>
+
<li><a href="https://2009.igem.org/Team:HKUST/Part1">Parts Design</a></li>
-
<li><a href="https://2009.igem.org/Team:HKUST/Result1">Experimental result</a></li>
+
<li><a href="https://2009.igem.org/Team:HKUST/Result1">Experimental Results</a></li>
-
<li><a href="https://2009.igem.org/Team:HKUST/Future1">Future work</a></li>
+
<li><a href="https://2009.igem.org/Team:HKUST/Future1">Future Work</a></li>
-
<li><a href="https://2009.igem.org/Team:HKUST/Ref1">Reference</a></li>
+
<li><a href="https://2009.igem.org/Team:HKUST/Ref1">References</a></li>
                </div>
                </div>

Latest revision as of 17:58, 21 October 2009

Salt and Soap template

a

Fusion Receptor Construction

We have successfully constructed the chimeric receptor using PCR, and have cloned it into the yeast expression vector pESC-His. Also, we have successfully constructed the chimeric receptor tagged with GFP, RI7 tagged with FLAG, as well as GFP alone inserted into the vector. Figure 10 shows the agarose gel electrophoresis pictures, highlighting the correct sizes after enzyme digestion of pESC-Fusion-FLAG and pESC-RI7-FLAG.





Chimeric Receptor Membrane Localization Assay


We have tested the localization of the chimeric receptor onto the yeast membrane. We have used the constructs pESC-Fusion-GFP and pESC-GFP to carry out the assay. After induction of galactose for 45 minutes, yeast transformed with pESC-Fusion-GFP shows clear GFP signal around the cell membrane, forming a smooth green halo; whilst non-induced cells show no such green halo (Figure 11). Nevertheless, there is some GFP expression in the non-induced cells, which means that the GAL1 promoter is somewhat leaky. This has been experimentally detected in another study[8]. After induction for more than 1.5 hours, over-expression of chimeric receptors results in stronger GFP intensity (Figure 11(b)). The above results show that our chimeric receptor can indeed localize to the yeast membrane.





Chimeric Receptor Functional Assay

Part 1

We have performed receptor functional assay, using diacetyl and hexanal to induce yeasts transformed with pESC-Fusion-FLAG, pESC-RI7-FLAG and pESC empty vector. Although we have not had the reporter pRS426-FUS1P-GFP-FUS1T ready, we could still carry out this assay using the phenomenon of cell cycle arrest at G1 phase as a “reporter”.

As a result, we first induced the cells with galactose; then we used the ligands diacetyl(5mM) and hexanal(5mM) to induce yeast cells; finally we analyzed cell DNA contents by FACS assay. The results are shown as follows (Figure 12).


As we can see, compared with the control in which no ligands were added, RI7 FACS shows that the majority of cells stop at G1 phase after 2 hours of induction with its ligand hexanal; the chimeric receptor FACS also shows cell cycle arrest at G1 phase for the majority of the population after induction with diacetyl for 2 hours. We could not see the whole population arrested at G1 phase, which is as we have expected because we are using the yeast endogenous GPA1 subunit to couple with RI7-C terminus, and this coupling is not as efficient as Gαolf, according to literature. We can also conclude that RI7 and our chimeric receptor have similar efficiency in sensing and coupling, because the number of cells arrested at G1 phase and the response time to the ligands (before 2 hours) are similar for both.

In sum, we can say that our chimeric receptor is functioning as a ligand sensing receptor for the volatile molecule diacetyl.

Part 2

In this part, we need to first manipulate the yeast strain we are using by knocking out the FAR1 and GPA1 genes.

First we need to knock out the FAR1 gene, so that cells will not arrest at G1 phase after ligand binding. The following result shows successful FAR1 deletion (Figure13). After α factor induction, wild type cells display mating phenotype “shmoo”; FAR1 knock-out strain only shows normal yeast phenotypes “budding”.



Then we proceeded to delete the GPA1 gene from the △FAR1 strain using the same method. This time, as there are no particular phenotypes of the deletion strain, we used PCR to confirm the successful knock-out strain. By carefully designing different sets of primers, we were able to identify the colony that showed proper bands as we have expected.

To conclude, we have successfully knocked out the FAR1 gene and the GPA1 gene. So far, we have made our desired strain to functionally express our engineered odorant sensing chimeric receptor.

  • Background
  • Experimental Design
  • Parts Design
  • Experimental Results
  • Future Work
  • References
  • HKUST