Team:Alberta/Project/Chromosome Assembly
From 2009.igem.org
Line 26: | Line 26: | ||
<div class="Outreach"> | <div class="Outreach"> | ||
<div style="height: 400; background:#FFFFFF; colorou line-height:100% padding: 3px 0px;"> | <div style="height: 400; background:#FFFFFF; colorou line-height:100% padding: 3px 0px;"> | ||
- | <h1> | + | <h1>Chromosome Assembly</h1> |
- | <p> | + | <p>A powerful implementation of BioBytes technology is the construction of artificial chromosomes. One of the goals of our project was the design of a minimalized <i>Escherichia coli</i> genome (see <a href="https://2009.igem.org/Team:Alberta/Project/Bioinformatics">Bioinformatics</a>). However, BioBytes alone can only facilitate the in vitro construction of a synthetic chromosome. A method is needed to insert the construct into a cell and displace the original chromosome.</p> |
+ | |||
+ | <p>One approach would be to fabricate the entire construct in vitro in the form of a bacterial artificial chromosome (BAC), insert the BAC, and then inactivate the host chromosome. However, we have adopted the approach of piecing together the chromosome in vivo by recombining synthetic sections into the original host chromosome. This provides a step-wise means of testing the functionality of smaller gene subsets rather than attempting to find errors in an entire minimal chromosome.</p> | ||
<h2>In Vivo Construction</h2> | <h2>In Vivo Construction</h2> |
Revision as of 18:12, 21 October 2009
|
Chromosome AssemblyA powerful implementation of BioBytes technology is the construction of artificial chromosomes. One of the goals of our project was the design of a minimalized Escherichia coli genome (see Bioinformatics). However, BioBytes alone can only facilitate the in vitro construction of a synthetic chromosome. A method is needed to insert the construct into a cell and displace the original chromosome. One approach would be to fabricate the entire construct in vitro in the form of a bacterial artificial chromosome (BAC), insert the BAC, and then inactivate the host chromosome. However, we have adopted the approach of piecing together the chromosome in vivo by recombining synthetic sections into the original host chromosome. This provides a step-wise means of testing the functionality of smaller gene subsets rather than attempting to find errors in an entire minimal chromosome. In Vivo ConstructionFigure 1. This method requires a technique known as Lambda Red recombination. Synthetic sections produced via the BioBytes method can be transformed through electroporation as linear fragments. Once a fragment is in a cell, the Red recombination genes direct the section to a double crossover event at regions on the chromosome homologous to regions flanking the ends of the synthetic section. This results in the replacement of a large portion of the original chromosome with a synthetic construct. For a fully synthetic genome, this process can be repeated until only the original Ori remains. Figure 2. Advantages of Recombination Over Building BAC's
|