Team:HKU-HKBU/Project

From 2009.igem.org

(Difference between revisions)
(Overview)
Line 8: Line 8:
<html>
<html>
-
<object width="550" height="400">
+
<object width="550" height="400" style="margin-left:150px">
       <param name="movie" value="Banner.swf">
       <param name="movie" value="Banner.swf">
       <embed src="https://static.igem.org/mediawiki/2009/3/39/Overview.swf" width="550" height="400">
       <embed src="https://static.igem.org/mediawiki/2009/3/39/Overview.swf" width="550" height="400">

Revision as of 01:48, 22 October 2009

Overview

A Schematic overview of our project

We face a problem...

In a world of non-insavive medical procedures nanorobots show great promise in aspects such as surgical instrumentation and drug delivery. However, many of these nanorobots lack a reliable propulsion power source to operate and this remains one of the biggest obstacles to their popularization in clinical practice. Our "Bactomotor" aims to overcome these problems to bring about a foundational and pioneering advancement in the field.

The HKU-HKBU solution

Our model can be divided into THREE Devices:

  1. Device 1(Micro-motor): A micrometer-sized motor with one side coated by some material (biotin in our design) that can strongly interact with the protein in the second module.
  2. Device 2(Direction Controller): A bacterial strain that has flagella and is a fast-swimmer. In terms of swimming, the strain must swim a unidirectional movement without tumbling. The strain needs to express a protein (streptavidin in our design) at one pole of the cell surface. This protein can bound very strongly to one side of a motor and hence attach itself to the motor.
  3. Device 3(Speed Controller): The bacterial swimming speed can be regulated by specific reagents (aTc in our design)

Further applications of our solution

The application of "Bactomotor" will be extremely valuable when comes to nanorobots-assisted surgery or any medical treatment that requires nanorobots for body inspection as they provide a non-invasive method. A few examples are given below:

  • Selective drug delivery to target cells - dramatically increasing bioavailability and minimizing side effects.
  • Removing of plaque from small arteries/arterioles/capillaries as treatment for atherosclerosis not reachable by catheters.
  • Lysis of blood clot in small arteries in brain as treatment for stroke

Besides applications in medicine, the bio-motor can be used to generate electricity. It will provide promising alternative renewable energy sources to our increasing electricity-demanding world, especially to those developing countries. Nevertheless, these examples are only to act as some valuable stepping stones for us to pursuit further discoveries and to develop more sophisticated products in coming years.

Sponsors