Team:LCG-UNAM-Mexico:CA
From 2009.igem.org
(Difference between revisions)
(→Infection With Our system) |
|||
(6 intermediate revisions not shown) | |||
Line 2: | Line 2: | ||
- | =Modeling bacteria behaviour and Bacteriophage infection using Cellular Automata= | + | =Multi-Scale Stochastic Modeling for bacteria behaviour and Bacteriophage infection using Cellular Automata= |
<span style="font-size:16px"> | <span style="font-size:16px"> | ||
Line 58: | Line 58: | ||
===Infection With Our system=== | ===Infection With Our system=== | ||
<br><br> | <br><br> | ||
- | [[Team:LCG-UNAM-Mexico:Molecular model | Molecuar Simulations using the kamikaze system]] showed that our construction works as expected. We performed a sensitivity analysis for the crucial parameter in our kamikaze system: the ribosome deactivation rate by Colicin E3. We observed that over a wide range of values (10^-1 - 10^- | + | [[Team:LCG-UNAM-Mexico:Molecular model | Molecuar Simulations using the kamikaze system]] showed that our construction works as expected. We performed a sensitivity analysis for the crucial parameter in our kamikaze system: the ribosome deactivation rate by Colicin E3. We observed that over a wide range of values (10^-1 - 10^-4) the mean of the BSD was reduced to 0, nevertheless we performed CA simulations for both the zero and non zero mean BS. |
+ | <br> | ||
+ | <br> | ||
+ | <html> | ||
+ | <head> | ||
+ | <center> | ||
+ | Cellular Automaton Simulation. Mean of the Burst Size Distribution Sampled: 0.0 | ||
+ | <object width="560" height="340"><param name="movie" value="http://www.youtube.com/v/tmq-KfVWeKE&hl=en&fs=1&"></param><param name="allowFullScreen" value="true"></param><param name="allowscriptaccess" value="always"></param><embed src="http://www.youtube.com/v/tmq-KfVWeKE&hl=en&fs=1&" type="application/x-shockwave-flash" allowscriptaccess="always" allowfullscreen="true" width="560" height="340"></embed></object> | ||
+ | </center> | ||
+ | </head> | ||
+ | </html> | ||
+ | <br> | ||
+ | The above video shows a simulation in which we used the results obtained from the molecular simulations using the kamikaze system. Burst Size Mean = 0. Bacteria wins the fight. This behaviour is observed for a wide range of values for the rate of ribosome inactivation by Colicin E3 (10e-1 ~ 10e-4). This results suggests that our system indeed works as expected. Experimental results for Colicin E3 kinetics are needed in order to validate and improve our model, sadly we didn’t obtained this results. | ||
+ | |||
+ | <br><br><br> | ||
+ | <html> | ||
+ | <head> | ||
+ | <center> | ||
+ | Cellular Automaton Simulation. Mean of the Burst Size Distribution Sampled: 5.8 | ||
+ | <object width="560" height="340"><param name="movie" value="http://www.youtube.com/v/CCZdjdatnOw&hl=en&fs=1&color1=0x006699&color2=0x54abd6"></param><param name="allowFullScreen" value="true"></param><param name="allowscriptaccess" value="always"></param><embed src="http://www.youtube.com/v/CCZdjdatnOw&hl=en&fs=1&color1=0x006699&color2=0x54abd6" type="application/x-shockwave-flash" allowscriptaccess="always" allowfullscreen="true" width="560" height="340"></embed></object></center> | ||
+ | </head> | ||
+ | </html> | ||
+ | Using the value of 5.8 for the burst size we observe that the population, after a brave struggle with phages, sadly dies. This result was expected since the latency period of T7 is smaller than the duplication time of E.Coli and each infected bacterium will produce an average of 6 phages!<br> | ||
+ | Our system work as expected for burst size values less or equal to 1. Sensitivity analysis shows that our system works for a wide range of values for the ribosome inactivation rate but even a small burst size value like 6 will eventually kill the whole population. | ||
==Design== | ==Design== |
Latest revision as of 02:59, 22 October 2009