Team:Valencia/PruebaDocs

From 2009.igem.org

(Difference between revisions)
Line 1: Line 1:
 +
__FORCETOC__
 +
<math>f(t) = {a_0 \over 2} + \sum_{n=1}^{\infty}{ a_n \cos ( \omega n t ) + b_n \sin ( \omega n t ) } </math>
<math>f(t) = {a_0 \over 2} + \sum_{n=1}^{\infty}{ a_n \cos ( \omega n t ) + b_n \sin ( \omega n t ) } </math>

Revision as of 19:32, 12 August 2009


<math>f(t) = {a_0 \over 2} + \sum_{n=1}^{\infty}{ a_n \cos ( \omega n t ) + b_n \sin ( \omega n t ) } </math>

When dealing with general function RC, the transform takes on an integral form:

<math>f(t) = {1 \over \sqrt{2 \pi}} \int_{- \infty}^{+ \infty}{g( \omega )e^{ i \omega t } \,d\omega }</math> <math>\alpha A +\beta B ... \rightleftharpoons \sigma S+\tau T ...</math>

{{math|α}} α &radic3 + 5

m &= \frac{m_0}{\sqrt{1-\frac{v^2}{c^2}}}

Contents

Fractions, matrices, multilines

<math>\int_0^\infty e^{-x^2}\,dx.</math>

x = (y2 + 2) x = <frac>{1}{4\pi^2\kappa^2}</frac> "{{#expr:.000001}}"



UPV[http://www.upv.es], VALENCIA TEAM 2009





Team Valencia Member Title Type
Mª.Angeles
[mail me]
File

File
Emilio
[mail me]
File
Joaquina
[mail me]
File
Sara
[mail me]
File
Juny
[mail me]
File
Manel
[mail me]
File
http://asgsb.indstate.edu/programs/2006/39.html
Link
http://biblioteca.universia.net/html_bura/ficha/params/id/37094521.html
Link
http://books.google.es/books?id=iw9pi1otD1EC
Link
Jerzy
[mail me]
File
File
File
File
Cristina
[email me]
File
Arnau
[mail me]
Guillem
[mail me]
File

http://www.uv.es/~biodiver/v/inve/grup_transgen.htm#personal
Link
Carles
[mail me]
File
Laura
[mail me]
File