Team:HKUST
From 2009.igem.org
Line 5: | Line 5: | ||
[[Image:Gut_flora_color.png|right|thumb|200px|Engineered gut flora]] | [[Image:Gut_flora_color.png|right|thumb|200px|Engineered gut flora]] | ||
- | The human gut houses a diverse collection of microorganisms, with important implications for the health and welfare of the host. We aim to engineer a member of this microbial community to provide innovative medical treatments. Our work focuses on four main areas: (1) pathogen defense either by expression of [[Team:Caltech/Project/Phage_Pathogen_Defense|<font style="color:#BB4400">pathogen-specific bacteriophage</font>]] or by targeted bursts of [[Team: | + | The human gut houses a diverse collection of microorganisms, with important implications for the health and welfare of the host. We aim to engineer a member of this microbial community to provide innovative medical treatments. Our work focuses on four main areas: (1) pathogen defense either by expression of [[Team:Caltech/Project/Phage_Pathogen_Defense|<font style="color:#BB4400">pathogen-specific bacteriophage</font>]] or by targeted bursts of [[Team:HKUST/Project/Oxidative_Burst|<font style="color:#BB4400">reactive oxygen species</font>]]; (2) prevention of birth defects by [[Team:Caltech/Project/Vitamins|<font style="color:#BB4400">folate over-expression</font>]] and delivery; (3) treatment of [[Team:Caltech/Project/Lactose_intolerance|<font style="color:#BB4400">lactose intolerance</font>]] by cleaving lactose to allow absorption in the large intestine; and (4) [[Team:Caltech/Project/Population_Variation|<font style="color:#BB4400">regulation</font>]] of these three treatment functions to produce renewable subpopulations specialized for each function. Our research demonstrates that synthetic biology techniques can be used to modify naturally occurring microbial communities for applications in biomedicine and biotechnology. |
{{clear}} | {{clear}} | ||
Revision as of 06:36, 26 August 2009
People
|
BUG BUSTERThe human gut houses a diverse collection of microorganisms, with important implications for the health and welfare of the host. We aim to engineer a member of this microbial community to provide innovative medical treatments. Our work focuses on four main areas: (1) pathogen defense either by expression of pathogen-specific bacteriophage or by targeted bursts of reactive oxygen species; (2) prevention of birth defects by folate over-expression and delivery; (3) treatment of lactose intolerance by cleaving lactose to allow absorption in the large intestine; and (4) regulation of these three treatment functions to produce renewable subpopulations specialized for each function. Our research demonstrates that synthetic biology techniques can be used to modify naturally occurring microbial communities for applications in biomedicine and biotechnology.
|