Team:Alberta/Project/Modeling/FindMinimalGenome

From 2009.igem.org

(Difference between revisions)
Line 1: Line 1:
-
function [MinimalGenomes, UnEssentialGeneLists, Models] = FindMinimalGenomes(TheModel, NumberOfMinGenomes, FinalGrowthRate, NumberOfSteps, FirstThreshold)
+
function [MinimalGenomes, UnEssentialGeneLists, Models] = FindMinimalGenomes(TheModel, NumberOfMinGenomes, FinalGrowthRate, NumberOfSteps, FirstThreshold)
  %NumberOfMinGenomes: Number of minimal genomes you want the code to find (since there are many possible minimal genomes)
  %NumberOfMinGenomes: Number of minimal genomes you want the code to find (since there are many possible minimal genomes)
  %FinalGrowthRate: is what the final growth rate will apporximately be.  Lower values result in a lower final
  %FinalGrowthRate: is what the final growth rate will apporximately be.  Lower values result in a lower final
Line 36: Line 36:
     case 1
     case 1
         FinalGrowthRate = 0.2
         FinalGrowthRate = 0.2
-
         f1 = ((InitialGrowthRate-FinalGrowthRate)*0.87)+FinalGrowthRate
+
         FirstThreshold = ((InitialGrowthRate-FinalGrowthRate)*0.87)+FinalGrowthRate
-
        f2 = FinalGrowthRate;             
+
         n = 2; iterationsPerList = n+1  % n = 2 results in 3 iterations of gene filtering.       
         n = 2; iterationsPerList = n+1  % n = 2 results in 3 iterations of gene filtering.       
         NumberOfMinGenomes = 1;
         NumberOfMinGenomes = 1;
     case 2
     case 2
         FinalGrowthRate = 0.2
         FinalGrowthRate = 0.2
-
         f1 = ((InitialGrowthRate-FinalGrowthRate)*0.87)+FinalGrowthRate
+
         FirstThreshold = ((InitialGrowthRate-FinalGrowthRate)*0.87)+FinalGrowthRate
-
        f2 = 0.3               
+
         n = 2; iterationsPerList = n+1                     
         n = 2; iterationsPerList = n+1                     
     case 3
     case 3
         FinalGrowthRate
         FinalGrowthRate
-
         f1 = ((InitialGrowthRate-FinalGrowthRate)*0.87)+FinalGrowthRate
+
         FirstThreshold = ((InitialGrowthRate-FinalGrowthRate)*0.87)+FinalGrowthRate
-
        f2 = FinalGrowthRate               
+
         n = 2; iterationsPerList = n+1                 
         n = 2; iterationsPerList = n+1                 
     case 4
     case 4
Line 54: Line 51:
             error('NumberOfSteps must be an integer')
             error('NumberOfSteps must be an integer')
         end
         end
-
         f1 = ((InitialGrowthRate-FinalGrowthRate)*0.87)+FinalGrowthRate
+
         FinalGrowthRate
-
        f2 = FinalGrowthRate
+
        FirstThreshold = ((InitialGrowthRate-FinalGrowthRate)*0.87)+FinalGrowthRate
         if NumberOfSteps == 1
         if NumberOfSteps == 1
             n = 0.000000001; %to cause only 1 iteration & to prevent division by 0 (which only Chuck Norris can do).
             n = 0.000000001; %to cause only 1 iteration & to prevent division by 0 (which only Chuck Norris can do).
Line 67: Line 64:
             error('NumberOfSteps must be an integer')
             error('NumberOfSteps must be an integer')
         end
         end
-
         f1 = FirstThreshold
+
         FinalGrowthRate
-
         f2 = FinalGrowthRate
+
         FirstThreshold
         if NumberOfSteps == 1
         if NumberOfSteps == 1
             n = 0.000000001; %to cause only 1 iteration & to prevent division by 0
             n = 0.000000001; %to cause only 1 iteration & to prevent division by 0
Line 75: Line 72:
         n = NumberOfSteps-1;
         n = NumberOfSteps-1;
         iterationsPerList = NumberOfSteps
         iterationsPerList = NumberOfSteps
 +
        if FirstThreshold < FinalGrowthRate
 +
                error('FirstThreshold must be greater than FinalGrowthRate')
 +
        end
         end
         end
     otherwise
     otherwise
Line 80: Line 80:
  end
  end
   
   
-
  fStep = (f1-(f2)-0.0001)/n   
+
  fStep = (FirstThreshold-(FinalGrowthRate)-0.0001)/n   
  MinimalGenomes = cell(1,NumberOfMinGenomes);
  MinimalGenomes = cell(1,NumberOfMinGenomes);
  UnEssentialGeneLists = cell(1,NumberOfMinGenomes);
  UnEssentialGeneLists = cell(1,NumberOfMinGenomes);
Line 91: Line 91:
   
   
  while w<=NumberOfMinGenomes
  while w<=NumberOfMinGenomes
-
     disp(['Finding Minimal Genome List: ' num2str(w)]);
+
     disp(['Finding Minimal Genome List: ' num2str(w) ' of ' num2str(NumberOfMinGenomes)]);
      
      
     geneList = cell(1);
     geneList = cell(1);
     geneListTEST = cell(1);
     geneListTEST = cell(1);
     d = 1;
     d = 1;
-
     f = f1;
+
    k = 1;
 +
     f = FirstThreshold;
   
   
     %this part shuffles the TheModel list for randomization
     %this part shuffles the TheModel list for randomization
Line 107: Line 108:
     end
     end
    
    
-
     while f >= f2
+
     while f >= FinalGrowthRate
-
         disp(['Performing deletions that result in a growth rate of at least ' num2str(f) ' ...']);
+
         disp(['Performing iteration #' num2str(k) '. Threshold growth rate for this iteration of deletions is ' num2str(f) ' ...']);
-
       
+
         for c = (1:length(RandomGeneList))   
         for c = (1:length(RandomGeneList))   
             match = zeros(length(RandomGeneList));
             match = zeros(length(RandomGeneList));
Line 137: Line 137:
         disp(['Genes Deleted So Far for this List is: ' num2str(length(geneList))])
         disp(['Genes Deleted So Far for this List is: ' num2str(length(geneList))])
         f = f-fStep;
         f = f-fStep;
 +
        k = k+1;
     end
     end
      
      
Line 155: Line 156:
         end
         end
     end
     end
-
     d = 1;
+
   
-
       
+
     d = 1;  
     for c=(1:length(WithThis))
     for c=(1:length(WithThis))
         if Match(c) == 0
         if Match(c) == 0

Revision as of 02:42, 9 October 2009

function [MinimalGenomes, UnEssentialGeneLists, Models] = FindMinimalGenomes(TheModel, NumberOfMinGenomes, FinalGrowthRate, NumberOfSteps, FirstThreshold)
%NumberOfMinGenomes: Number of minimal genomes you want the code to find (since there are many possible minimal genomes)
%FinalGrowthRate: is what the final growth rate will apporximately be.  Lower values result in a lower final
%growth rate, but this allows for more genes to be deleted (resulting in a smaller allowable minimal genome).
%FirstThreshold: This is the threshold growth rate for the first iteration of gene deletions.

disp('May take 5 mins per NumberOfMinGenomes (default is 1 list)')
solutionI = optimizeCbModel(TheModel);
InitialGrowthRate = solutionI.f

%Input/Output Error Checking

if nargout == 0
    error('You must have at least 1 output argument! For example: MinGenomes = FindMinimalGenomes(model)')
end
if nargin >=3
   if FinalGrowthRate > InitialGrowthRate
       disp(['FinalGrowthRate (set by you): ' num2str(FinalGrowthRate)]);
       error('The FinalGrowthRate must be less than the InitialGrowthRate')
   end
end
if nargin >=4
   if NumberOfSteps < 1
       error('NumberOfSteps must be greater than or equal to 1!')
   end
end
if nargin == 5
   if FirstThreshold >= InitialGrowthRate
       error('FirstThreshold must be less than the InitialGrowthRate')
   end
end

%Initialization of variables

switch nargin
    case 1
        FinalGrowthRate = 0.2
        FirstThreshold = ((InitialGrowthRate-FinalGrowthRate)*0.87)+FinalGrowthRate
        n = 2; iterationsPerList = n+1  % n = 2 results in 3 iterations of gene filtering.       
        NumberOfMinGenomes = 1;
    case 2
        FinalGrowthRate = 0.2
        FirstThreshold = ((InitialGrowthRate-FinalGrowthRate)*0.87)+FinalGrowthRate
        n = 2; iterationsPerList = n+1                    
    case 3
        FinalGrowthRate
        FirstThreshold = ((InitialGrowthRate-FinalGrowthRate)*0.87)+FinalGrowthRate
        n = 2; iterationsPerList = n+1                 
    case 4
        if rem(NumberOfSteps,1) ~= 0
            error('NumberOfSteps must be an integer')
        end
        FinalGrowthRate
        FirstThreshold = ((InitialGrowthRate-FinalGrowthRate)*0.87)+FinalGrowthRate
        if NumberOfSteps == 1
            n = 0.000000001; %to cause only 1 iteration & to prevent division by 0 (which only Chuck Norris can do).
            iterationsPerList = 1
        else
        n = NumberOfSteps-1;
        iterationsPerList = NumberOfSteps
        end
    case 5
        if rem(NumberOfSteps,1) ~= 0
            error('NumberOfSteps must be an integer')
        end
        FinalGrowthRate
        FirstThreshold
        if NumberOfSteps == 1
            n = 0.000000001; %to cause only 1 iteration & to prevent division by 0
            iterationsPerList = 1
        else
        n = NumberOfSteps-1;
        iterationsPerList = NumberOfSteps
        if FirstThreshold < FinalGrowthRate
                error('FirstThreshold must be greater than FinalGrowthRate')
        end
        end
    otherwise
        error('Too many input arguments! Sorry, try again!')
end

fStep = (FirstThreshold-(FinalGrowthRate)-0.0001)/n   
MinimalGenomes = cell(1,NumberOfMinGenomes);
UnEssentialGeneLists = cell(1,NumberOfMinGenomes);
TheModelOriginal = TheModel;
Models = cell(1);

w = 1;

%Algorithm to find minimal genomes.

while w<=NumberOfMinGenomes
    disp(['Finding Minimal Genome List: ' num2str(w) ' of ' num2str(NumberOfMinGenomes)]);
    
    geneList = cell(1);
    geneListTEST = cell(1);
    d = 1;
    k = 1;
    f = FirstThreshold;

    %this part shuffles the TheModel list for randomization
    
    RandomGeneList = cell(1,length(TheModelOriginal.genes));
    random = randperm(length(TheModel.genes))';
    
    for x = (1:length(TheModel.genes))
        RandomGeneList(x) = TheModelOriginal.genes(random(x));
    end
 
    while f >= FinalGrowthRate
        disp(['Performing iteration #' num2str(k) '. Threshold growth rate for this iteration of deletions is ' num2str(f) ' ...']);
        for c = (1:length(RandomGeneList))   
            match = zeros(length(RandomGeneList));
            for a = (1:length(geneList))  %check if gene already on geneList. if so, skip analysis
                if strcmp(geneList(a),RandomGeneList(c)) == 1 
                    match(a) = 1;
                else
                    match(a) = 0;
                end
            end
            
          %This part decides whether or not to permanently knockout a gene
            
            if sum(match) == 0  %if gene does not exist in geneList yet, test its deletion
                geneListTEST(d) = RandomGeneList(c);
                
                deltamodel = deleteModelGenes(TheModelOriginal,geneListTEST); 
                solution = optimizeCbModel(deltamodel);
            
                if solution.f > f %"if the deletion causes satisfactory growth, commit gene to geneList
                    geneList(d) = geneListTEST(d);  
                    %F(d) = solution.f; 
                    d = d+1;
                end 
            end
        end
        disp(['Genes Deleted So Far for this List is: ' num2str(length(geneList))])
        f = f-fStep;
        k = k+1;
    end
    
    UnEssentialGeneLists{w} = geneList';

    %This part "inverts" the unessential list of genes to obtain the essential list (the minimal genome).
    
    InvertThis = UnEssentialGeneLists{w};
    WithThis = TheModel.genes;
    InvertedList = cell(1); 

    Match=zeros(length(WithThis));
    for a = (1:length(InvertThis))
        for b = (1:length(WithThis))
            if strcmp(InvertThis(a), WithThis(b)) == 1
                Match(b) = 1;
            end
        end
    end
    
    d = 1;    
    for c=(1:length(WithThis))
        if Match(c) == 0
            InvertedList(d) = WithThis(c);
            d = d+1;
        end
    end
    MinimalGenomes{w} = InvertedList'
    Models{w} = deleteModelGenes(TheModelOriginal, geneList);
    w = w+1;
end

if nargout == 3
    disp('Access a model of interest like this: model3 = Models{3}, except replace "Models" with your 3rd output argument.')
end

%University of Alberta 2009 iGEM Team
%Project BioBytes 
%EricB