Team:Waterloo

From 2009.igem.org

(Difference between revisions)
Line 1: Line 1:
-
[[Image:IGEM_colour_team_logo400px.png|left|frame]]
 
-
 
-
== '''Team Waterloo 2009 Project:<br> <i>Chromobricks: A Platform for Chromosome Engineering with BioBricks</i> ''' ==
 
-
 
-
The aim of our project is to develop a fully-featured platform for chromosome engineering, allowing the in vivo assembly of a synthetic chromosome from interchangeable parts, followed by selective degradation of the native chromosome. We have designed a proof-of-concept for chromosome-building that will use the site-specific integrase of phage ΦC31 to integrate a BioBrick into a defined locus of the <i>E. coli</i> genome. Six pairs of integrase-targeted <i>att</i> sites have been designed to be non-cross-reactive in order to support repeatable cassette-exchange reactions for chromosome building. We have also written software to model the integrase-mediated rearrangement of DNA molecules containing <i>att</i> sites, to aid the design of more elaborate chromosome-building systems. To selectively degrade the native chromosome we designed a nuclease-based, inducible genome-degradation system. In its simplest form, our system can be used to integrate biological devices into a chromosome in situations requiring stable copy number and selection-free maintenance.
 
-
 
-
 
-
|[[Image:UWiGEMF09teampictures800px.JPG|thumb|center|x500px|frame|Those who showed up for picture day]]
 
-
 
-
 
<!--- The Mission, Experiments --->
<!--- The Mission, Experiments --->
Line 20: Line 10:
|}
|}
(''Or you can choose different headings.  But you must have a team page, a project page, and a notebook page.'')
(''Or you can choose different headings.  But you must have a team page, a project page, and a notebook page.'')
 +
[[Image:IGEM_colour_team_logo400px.png|left|frame]]
 +
 +
== '''Team Waterloo 2009 Project:<br> <i>Chromobricks: A Platform for Chromosome Engineering with BioBricks</i> ''' ==
 +
 +
The aim of our project is to develop a fully-featured platform for chromosome engineering, allowing the in vivo assembly of a synthetic chromosome from interchangeable parts, followed by selective degradation of the native chromosome. We have designed a proof-of-concept for chromosome-building that will use the site-specific integrase of phage ΦC31 to integrate a BioBrick into a defined locus of the <i>E. coli</i> genome. Six pairs of integrase-targeted <i>att</i> sites have been designed to be non-cross-reactive in order to support repeatable cassette-exchange reactions for chromosome building. We have also written software to model the integrase-mediated rearrangement of DNA molecules containing <i>att</i> sites, to aid the design of more elaborate chromosome-building systems. To selectively degrade the native chromosome we designed a nuclease-based, inducible genome-degradation system. In its simplest form, our system can be used to integrate biological devices into a chromosome in situations requiring stable copy number and selection-free maintenance.
 +
 +
 +
|[[Image:UWiGEMF09teampictures800px.JPG|thumb|center|x500px|frame|Those who showed up for picture day]]

Revision as of 05:11, 11 October 2009


Home The Team The Project Parts Submitted to the Registry Modeling Notebook

(Or you can choose different headings. But you must have a team page, a project page, and a notebook page.)

IGEM colour team logo400px.png

Team Waterloo 2009 Project:
Chromobricks: A Platform for Chromosome Engineering with BioBricks

The aim of our project is to develop a fully-featured platform for chromosome engineering, allowing the in vivo assembly of a synthetic chromosome from interchangeable parts, followed by selective degradation of the native chromosome. We have designed a proof-of-concept for chromosome-building that will use the site-specific integrase of phage ΦC31 to integrate a BioBrick into a defined locus of the E. coli genome. Six pairs of integrase-targeted att sites have been designed to be non-cross-reactive in order to support repeatable cassette-exchange reactions for chromosome building. We have also written software to model the integrase-mediated rearrangement of DNA molecules containing att sites, to aid the design of more elaborate chromosome-building systems. To selectively degrade the native chromosome we designed a nuclease-based, inducible genome-degradation system. In its simplest form, our system can be used to integrate biological devices into a chromosome in situations requiring stable copy number and selection-free maintenance.


|
Those who showed up for picture day