Team:TorontoMaRSDiscovery

From 2009.igem.org

(Difference between revisions)
 
(41 intermediate revisions not shown)
Line 1: Line 1:
-
[[image:top(nolink).png]]
+
[[image:Top(nolink).png]]
-
{| style="color:#4682b4;background-color:#191970;" cellpadding="3" cellspacing="1" border="1" bordercolor="#fff" width="70%" align="center"
+
{| style="color:white;background-color:#99CCFF;" height:100px cellpadding="2" cellspacing="0" border="0" width="100%" align="center" class="menu"
!align="center"|[[Team:TorontoMaRSDiscovery|Home]]
!align="center"|[[Team:TorontoMaRSDiscovery|Home]]
!align="center"|[[Team:TorontoMaRSDiscovery/Team|The Team]]
!align="center"|[[Team:TorontoMaRSDiscovery/Team|The Team]]
!align="center"|[[Team:TorontoMaRSDiscovery/Project|The Project]]
!align="center"|[[Team:TorontoMaRSDiscovery/Project|The Project]]
-
!align="center"|[[Team:TorontoMaRSDiscovery/Parts|Parts Submitted to the Registry]]
+
!align="center"|[[Team:TorontoMaRSDiscovery/Parts|BioBricks]]
-
!align="center"|[[Team:TorontoMaRSDiscovery/Modeling|Modeling]]
+
!align="center"|[[Team:TorontoMaRSDiscovery/Modeling|Modelling]]
!align="center"|[[Team:TorontoMaRSDiscovery/Bioinformatics|Bioinformatics]]
!align="center"|[[Team:TorontoMaRSDiscovery/Bioinformatics|Bioinformatics]]
 +
!align="center"|[[Team:TorontoMaRSDiscovery/Safety|Safety]]
!align="center"|[[Team:TorontoMaRSDiscovery/Notebook|Notebook]]
!align="center"|[[Team:TorontoMaRSDiscovery/Notebook|Notebook]]
|}
|}
<br>
<br>
 +
[[image:Team_logo_encapsulator.png|thumb|Our machine!]]
 +
=The Encapsulator=
 +
A key challenge in metabolic engineering is to improve productivity and yield.  Potential applications range from the production of valuable compounds such as therapeutic molecules and biofuels to the degradation of toxic wastes.  There is increasing recognition that spatial organization can play an important role in optimizing pathway efficiency.  Specifically, the spatial co-localization of consecutive enzymes in a pathway can result in efficient translocation of substrates between enzymes, an effect known as enzyme "channeling".  Here we report the design, modeling and construction of a bacterial micro-organelle based system for the targeted co-localization of selected enzymes.  Our "Encapsulator" represents a fundamentally new class of parts which, in nature consist of metabolic enzymes encased within a multi-protein shell reminiscent of a viral capsid.  Micro-compartments based on encapsulin (and similar proteins) represent an experimentally amenable system to investigate the effects of channeling in potential downstream applications.
-
== University of Toronto iGEM Team ==
+
=Sponsored by:=
 +
<gallery>
 +
Image:Cagef_logo.jpg|Center for Analysis of Genome Evolution and Function
 +
Image:Skule-small.jpg|University of Toronto Engineering Society
 +
Image:skule-alumni-small.JPG|Engineering Society Alumni
 +
Image:CGPGBB_seqlogo_text.png|Collaborative Graduate Program in Genome Biology and Bioinformatics
 +
</gallery>
-
This is the wiki of the University of Toronto iGem team at the MaRS Building. This site will be updated with more information as time progresses but in the interest of shameless self promotion. I will be introducing our headline roster for the 2009 competition.
+
=Collaborations=
-
[[image:MarsMedal(small).png|right|frame|We are proud to support our colleagues in Valencia!]]
+
[[image:MarsMedal(small).png|left|frame|We are proud to support our colleagues in València!]]
-
 
+
-
==== Lab Team ====
+
-
----
+
-
 
+
-
:'''Kenny Zhan
+
-
 
+
-
:'''James Juras
+
-
 
+
-
:'''Yen Leung
+
-
 
+
-
:'''Meah Gao
+
-
 
+
-
:'''Farhan Raja
+
-
 
+
-
==== Executive Team ====
+
-
----
+
-
 
+
-
:'''Stacy Hung
+
-
 
+
-
:'''Graham Cromar
+
-
 
+
-
:'''Daniel Wong
+
-
 
+
-
:'''Natalie Yeung
+
-
 
+
-
:'''Conrad Lochovsky
+
-
 
+
-
 
+
-
==== Primary Goals ====
+
-
----
+
-
:''1. Create a standardized, re-useable platform to co-localize enzyme pairs ultimately to investigate the potential for enzyme channeling
+
-
 
+
-
:''2. Apply channeling to a pathway of biological and/or biotechnological relevance
+
-
 
+
-
 
+
-
 
+
-
<!--- The Mission, Experiments --->
+

Latest revision as of 02:49, 22 October 2009

Top(nolink).png


Our machine!

The Encapsulator

A key challenge in metabolic engineering is to improve productivity and yield. Potential applications range from the production of valuable compounds such as therapeutic molecules and biofuels to the degradation of toxic wastes. There is increasing recognition that spatial organization can play an important role in optimizing pathway efficiency. Specifically, the spatial co-localization of consecutive enzymes in a pathway can result in efficient translocation of substrates between enzymes, an effect known as enzyme "channeling". Here we report the design, modeling and construction of a bacterial micro-organelle based system for the targeted co-localization of selected enzymes. Our "Encapsulator" represents a fundamentally new class of parts which, in nature consist of metabolic enzymes encased within a multi-protein shell reminiscent of a viral capsid. Micro-compartments based on encapsulin (and similar proteins) represent an experimentally amenable system to investigate the effects of channeling in potential downstream applications.

Collaborations

We are proud to support our colleagues in València!