Team:UNIPV-Pavia/Project/References
From 2009.igem.org
(2 intermediate revisions not shown) | |||
Line 98: | Line 98: | ||
enviromental microbiology, 53(10):2420-2425, october 1987. | enviromental microbiology, 53(10):2420-2425, october 1987. | ||
- | <html><a name=" | + | <html><a name="18" id="18"></a></html> |
[18] J.R. Kelly, A.J. Rubin, J.H.Davis, C.M. Ajo-Franklin, J.Cumbers, | [18] J.R. Kelly, A.J. Rubin, J.H.Davis, C.M. Ajo-Franklin, J.Cumbers, | ||
M.J.Czar, K. de Mora, A.L. Glieberman, D.D. Moonie, and D. Endy. | M.J.Czar, K. de Mora, A.L. Glieberman, D.D. Moonie, and D. Endy. | ||
Line 183: | Line 183: | ||
[49] Tipologie di recupero tradizionale del siero (<html><a href="http://www.tecnologiepulite" target="_blank">http://www.tecnologiepulite</a></html>) | [49] Tipologie di recupero tradizionale del siero (<html><a href="http://www.tecnologiepulite" target="_blank">http://www.tecnologiepulite</a></html>) | ||
+ | <html><a name="50" id="50"></a></html> | ||
[50] Rachel Karpel, Tamar Alon, Gad GlaserS, Shimon Schuldiner, and Etana Padan - Expression of a Sodium Proton Antiporter (NhaA) in Escherichia coli Is Inducedby Na+ and Li+ Ions - The Journal of Biological Chemistry. 1991 Nov; 266(32):21753-21759. | [50] Rachel Karpel, Tamar Alon, Gad GlaserS, Shimon Schuldiner, and Etana Padan - Expression of a Sodium Proton Antiporter (NhaA) in Escherichia coli Is Inducedby Na+ and Li+ Ions - The Journal of Biological Chemistry. 1991 Nov; 266(32):21753-21759. | ||
Latest revision as of 23:01, 21 October 2009
|
References |
|
[1] http://openwetware.org/wiki/E._coli_genotypes [2] AINT. Tecnologie disponibili per il trattamento di siero di latte e reflui dell'industria lattiero-casearia e localizzazione degli impianti in Puglia. Technical report, Agenzia per l'innovazione e l'internazionalizzazione delle imprese, 2007. [3] L. Banchelli. Recupero dei costituenti organici del siero del latte e bioconversione in proteine unicellulari da lievito alimentare. Technical report, OGM - Food Biopollution certification, 2002. [4] S. Bansal, H.S. Oberoi, G.S.Dhillon, and R.T: pAtil. Production of betagalactosidase by Kluyveromyces marxianus MTCC 1388 using whey and effect of four different methods of enzyme extraction on betagalactosidase activity. Indian J. Microbial, September 2008. [5] C. Bi, X. Zhang, L.O. Ingram, and J.F. Preston. Genetic engineering of Enterobacter absuriae strain JDR-1 for efficient production of ethanol from hemicellulose hydrolysate. Applied and enviromental microbiology, 75(18):5743-5749, September 2009. [6] E. Brunelli. Nuove idee per nuove specie batteriche. Industria della carta, 2008. [7] Barry Canton, Anna Labno, and Drew Endy. Refinement and standardization of synthetic biological parts and devices. Nature biotechnology, 26(7):787-793, 2008. [8] Bartholomew Canton. Engineering the interface between cellular chassis and synthetic biological systems. PhD thesis, Massachussets Institute of Technology, May 2008. [9] T. Conway, A. Osman, J.I.Konnan, E.M.Hoffman, and L.O.Ingram. Promoter and nucleotide sequence of the Zymomonas mobilis Pyruvate Decarboxylase. Journal of Bacteriology, 169(3):949-954, March 1987. [10] G. Croce. Tipologie di recupero tradizionale del siero. Technical report, ERVET Emilia-Romagna Valorizzazione Economica Territorio SpA, 2002. [11] Programma di Iniziativa Comunitaria Interreg III A Grecia-Italia 2000- 2006. Trattamento e valorizzazione reflui dell'industria lattiero-casearia, 2006. [12] V. Divella and G. Mastrini. SieroValore: scenari e prospettive per la valorizzazione dei reflui caseari. Technical report, Programma di Iniziativa Comunitaria Interreg III A Grecia-Italia 2000-2006, Assessorato Attivit`a Produttive della Provincia di Bari, 2008. [13] M.D. Ermolaeva. Synonymous codon usage in bacteria. Current Issues of Molecular Biology, 3(4):91-97, 2001. [14] Hyun-Beom Seo, Hyun-Joo Kim, Oh-Kyu Lee, Ji-Hye Ha, Hyeon-Yong Lee and Kyung-Hwan Jung. Measurement of ethanol concentration using solvent extraction and dichromate oxidation and its application to bioethanol production process. J Ind Microbiol Biotechnol (2009) 36:285–292. [15] M. Faccia. Studio sull'entità e sulla tipologia dei reflui prodotti dall'industria lattiero-casearia in provincia di Bari. Technical report, Universit`a degli Studi di Bari - Dipartimento di progettazione e gestione dei sistemi agrozootecnici e forestali, 2008. [16] R. Gelleti, R. Jodice, G. Mauro, D. Migliardi, D. Picco, M. Pin, E. Tomasinsig, and L. Tommasoni. Energia dalle biomasse: le tecnologie, i vantaggi per i processi produttivi, i valori economici e ambientali. Technical report, Servizio trasferimento tecnologico di AREA science Park e Progetto Novimpresa, April 2006. [16] B. Hahn-Hagerdal, M. Galbe, M.F. Gorwa-Grauslund, G. Liden, and G.Zacchi. Bioethanol, the fuel of tomorrow from the residues of today. TRENDS in biotechnology, 24(12):549-555, 2006. [17] L. 0. Ingram, T. Conway, G. W. Sewell D. P. Clark, and J. F. Preston. Genetic engineering of ethanol production in Escherichia coli. Applied and enviromental microbiology, 53(10):2420-2425, october 1987. [18] J.R. Kelly, A.J. Rubin, J.H.Davis, C.M. Ajo-Franklin, J.Cumbers, M.J.Czar, K. de Mora, A.L. Glieberman, D.D. Moonie, and D. Endy. Measuring the activity of BioBrick promoters using an in vivo reference standard. Journal of Biological Engineering, 3, 2009. [19] J.F. Lawrence and H. Ochman. Amelioration of bacterial genome: rates of change and exchange. Journal of Molecular Evolution, 44:383-397, 1997. [20] K.C. Ling. Whey to ethanol: a biofuel role for diary cooperatives? Technical report, USDA Rural developement, February 2008. [21] B.W. Matthews. The structure of E. coli beta-galactosidase. C.R.Biologies, 328:549-556, 2005. [22] Comunità montana di Baldo. L'energia da biomasse. Technical report, Comunità montana di Baldo, 2007. [23] Hyun-Beom Seo, Hyun-Joo Kim, Oh-Kyu Lee, Ji-Hye ha, Hyeon-Yong Lee, and Kyung-Hwan Jung. Measurement of ethanol concentration using solvent extraction and dichromate oxidation and its application to bioethanol production process. Journal of industrial microbiology and biotechonology, 36:285-292, 2009. [24] W.B. Silviera, F.J.V. Passos, H.C. Mantovani, and F.M.L. Passos. Ethanol production from cheese whey permeate by Kluyveromyces marxianus UFV3: a flux analysis of oxido reductive metabolism as a function of lactose concentration and oxygen levels. Enzyme and microbial technology, 36:930-936, 2005. [25] P. Wix and M. Woodbine. The disposal and utilization of whey: a review. Dairy Science, 20:537-541, 1958. [26] L.P. Yomano, S.W. York, S. Zhou, K.T. Shanmugam, and L.O. Ingram. Re-engineereing Escherichia coli for ethanol produztion. Biotechnology letters, 30:2097-2113, 2008. [27] S.W. York and L-O-Ingram. Soy-based medium for ethanol production by Escherichia coli K011. Journal of industrial microbiology and biotechonology, 16(6):374-376, 1996 [28] Altherthum F, Ingram LO. Efficient ethanol production from glucose, lactose, and xylose by Recombinant E. coli. Appl Environ Microbiol. 1989 Aug;1943-1984. [29] Bansal S, Oberoi HS, Dhillon GS, Patil RT. Production of β-galactosidase by Kluyveromyces marxianus MTCC 1388 using whey and effect of four different methods of enzyme extraction on β-galactosidase activity. Indian J Microbiol. 2008 Sept;48(3):337-341. [30] Dien BS, Cotta MA, Jeffries TW. Bacteria engineered for fuel ethanol production: current status. Applied microbiology and biotechnology. 2003 Dec;63(3):258-266. [31] Dien BS, Nichols NN, O'Bryan PJ and Bothast PJ..Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Applied Biochemistry and Biotechnology. 2000 Mar;84-86(1-9):181-196. [32] Domingues L, Lima N, Teixeira JA. Alcohol production from cheese whey permeate using genetically modified flocculent yeast cells. Biotechnol Bioeng. 2001 Mar 5;72(5):507-514. [33] Frey PA.The Leloir pathway: a mechanistic imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose. FASEB J. 1996 Mar;10(4):461-470. [34] Guimarães PM, Klein J, Domingues L, Teixeira JA. Fermentation performance of a recombinant lactose-consuming flocculating Saccharomyces cerevisiae stain. Braz J Food Technol. 2005 Mar;5°SIPAL:34-39. [35] Guimarães PM, Teixeira JA, Domingues L. Fermentation of high concentrations of lactose to ethanol by engineered flocculent Saccharomyces cerevisiae. Biotechnol Lett. 2008 Nov;30(11):1953-8. Epub 2008 Jun 25. [36] Guimarães PM, Teixeira JA, Domingues L. Alcoholic fermentation of lactose by engineered flocculent Saccharomyces cerevisiae. International conference and exhibition on bioenergy, Guimarães, Portugal, 2008 – “Bioenergy : challenges and opportunities.” [37] Holden HM, Rayment I, Thoden JB. Structure and function of enzymes of the Leloir pathway for galactose metabolism. J Biol Chem. 2003 Nov 7;278(45):43885-8. Epub 2003 Aug 15. [38] Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF. Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol. 1987 Oct;53(10):2420-2425. [39] Kalscheuer R, Stölting T, Steinbüchel A. Microdiesel: Escherichia coli engineered for fuel production. Microbiology. 2006 Sep;152(Pt 9):2529-2536. [40] Leite AR, Guimaraes WV, Fernardes de Araujo E, Silva DO. Fermentation of sweet whey by recombinant Escherichia coli. Braz J Food Technol. 2000;31:212-215. [41] Lewandowska M and Kujawski W. Ethanol production from lactose in a fermentation/pervaporation system. J Food Eng. 2007 Mar;79(2):430-437. [42] Ling KC. Whey to ethanol a biofuel role for dairy cooperatives. USDA Rural Development. Research Report 214. 2008 Feb. [43] Ostojic S, Pavlovic M, Zivic M, Filipovic Z, Gorjanovi S, Hranisavljevi S and Dojinovic M. Processing of whey from dairy industry waste. Environ Chem Lett. 2005 Aug;3(1):29-32. [44] Savage DF, Way J, Silver PA. Defossing fuel: how synthetic biology can transform biofuel production. ACS Chem Bio. 2008 Jan;3(1):13-16. [45] Silveira WB, Passos FJV, Mantovani HC and Passos FML. Ethanol production from cheese whey permeate by Kluyveromyces marxianus UFV-3: A flux analysis of oxido-reductive metabolism as a function of lactose concentration and oxygen levels. Enzym Microb Tech. 2005 May;36(7):930-936. [46] Staniszewski M, Kujawski W and Lewandowska M. Ethanol production from whey in bioreactor with co-immobilized enzyme and yeast cells followed by pervaporative recovery of product – Kinetic model predictions. J Food Eng. 2007 Oct; 82(4):618-625. [47] Recupero dei costituenti organici del siero di latte e bioconversione in proteine unicellulari da lievito alimentare. Pilot project I/02/B/F/PP-120211 [48] Agenzia per l'innovazione e l'internazionalizzazione delle imprese. Tecnologie disponibili per il trattamento di siero di latte e reflui dell'industria lattiero casearia e localizzazione degli impianti in Puglia. [49] Tipologie di recupero tradizionale del siero (http://www.tecnologiepulite) [50] Rachel Karpel, Tamar Alon, Gad GlaserS, Shimon Schuldiner, and Etana Padan - Expression of a Sodium Proton Antiporter (NhaA) in Escherichia coli Is Inducedby Na+ and Li+ Ions - The Journal of Biological Chemistry. 1991 Nov; 266(32):21753-21759. [51] Etana Padan and Shimon Schuldiner - Molecular Physiology Of The Na+/H+ Antiporter In Escherichia Coli - J. exp. Biol. 1994,196:443–456. [52] N. Dover, C. F. Higgins, O. Carmel, A. Rimon, E. Pinner, And E. Padan - Na+-Induced Transcription of nhaA, Which Encodes an Na+/H+ Antiporter in Escherichia coli, Is Positively Regulated by nhaR and Affected by hns - Journal Of Bacteriology, 1996 Nov.; 178(22):6508–6517. [53] Nir Dover And Etana Padan - Transcription of nhaA, the Main Na+/H+ Antiporter of Escherichia coli, Is Regulated by Na+ and Growth Phase - Journal Of Bacteriology, 2001 Jan.; 183(2):644–653. |