Team:KULeuven/Sandbox

From 2009.igem.org

(Difference between revisions)
(Andere ideeën:)
 
(70 intermediate revisions not shown)
Line 1: Line 1:
-
=Regulation bacteria=
+
{{Team:KULeuven/Common2/BeginHeader2}}
 +
{{Team:KULeuven/Common/SubMenu_Tools}}
 +
{{Team:KULeuven/Common2/EndHeader}}
 +
{{Team:KULeuven/Common2/Submenutest}}
-
The main idea is to develop a bacteria that regulates the concentration of a molecule 'X' and keeps it constant by a dynamical equilibrium (see presentation). This is being done by simultaneous synthesis and degradation (with 1 or 2 being dependant on concentration), a dynamical equilibrium exists when the synthesis equals the degradation. This dynamical equilibrium can be set by using light sensor, the light intensity would then be proportional to the concentration for the equilibrium.
+
= Sandbox =
-
==problems==
+
[[Team:KULeuven/Sandbox/Design1]]
 +
[[Team:KULeuven/Sandbox/Design2]]
-
'''Find magical molecule 'X''''
+
<html>
 +
<object type="application/x-shockwave-flash" data="http://www.oneplusyou.com/bb/files/countdown/countdown.swf?co=ff0000&bgcolor=ffffff&date_month=10&date_day=30&date_year=0&un=IGEM JAMBOREE 2009&size=small&mo=10&da=30&yr=2009" width="188" height="60"><param name="movie" value="http://www.oneplusyou.com/bb/files/countdown/countdown.swf?co=ff0000&bgcolor=ffffff&date_month=10&date_day=30&date_year=0&un=IGEM JAMBOREE 2009&size=small&mo=10&da=30&yr=2009" /><param name="bgcolor" value="#ffffff" /></object>
 +
</html>
-
Ideas for in aquarium (nutrients for fish):
 
-
'''Vitamine:'''
 
-
*Vitamine B12
 
-
**[http://ecocyc.org/ECOLI/substring-search?type=NIL&object=Vitamine+B12&quickSearch=Quick+Search Vitamine B12 on ecocyc.org]
 
-
*Thiamin
 
-
**[http://ecocyc.org/ECOLI/substring-search?type=NIL&object=thiamin&quickSearch=Quick+Search Thiamin on ecocyc.org] (biosynthesis + ABC transporter)
 
-
*Choline
 
-
**[http://ecocyc.org/ECOLI/substring-search?type=NIL&object=choline&quickSearch=Quick+Search Choline on ecyco.org] (metabolism + uptake)
 
-
*vitamine K
 
-
**[http://ecocyc.org/ECOLI/substring-search?type=NIL&object=Vitamine+K&quickSearch=Quick+Search Vitamine K on ecocyc.org]
 
-
**But no export mechanism
 
-
***TAT sequentie aanbouwen, systeem voor volledig gevouwen protein naar buiten brengen
 
 +
<html>
 +
<center>
 +
<div id="imapwrapper">
-
'''Essentiele aminoacids:'''
+
<div id="smallabstract">
-
*Methionine
+
<a href="#Abstract">
-
**[http://ecocyc.org/ECOLI/substring-search?type=NIL&object=Methionine&quickSearch=Quick+Search Methionine on ecocyc.org]
+
<span>Abstract</span>
-
**But no export mechanism
+
<p>
-
***TAT sequentie aanbouwen, systeem voor volledig gevouwen protein naar buiten brengen
+
''Essencia coli''’ is a vanillin producing bacterium equipped with a control system that keeps the concentration of vanillin at a constant level. The showpiece of the project is the feedback mechanism. Vanillin synthesis is initiated by irradiation with blue light. The preferred concentration can be modulated using the intensity of that light. At the same time the bacterium measures the amount of vanillin outside the cell and controls its production to maintain the set point. The designed system is universal in nature and has therefore potential benefits in different areas. The concept can easily be applied to other flavours and odours. In fact, any application that requires a constant concentration of a molecular substance is possible.
 +
</p>
 +
</a>
 +
</div>
 +
<dl id="imap2">
 +
<dt><a id="title" href="#" title="Factory Figure"></a></dt>
 +
<dd id="pic1"><a id="text1" title="Blue Light Receptor" href="#"><span></html>{{Team:KULeuven/Components/Blue_Light_Receptor}}<html></span></a></dd>
 +
<dd id="pic2"><a id="text2" title="Vanillin Receptor" href="#"><span></html>{{Team:KULeuven/Components/Vanillin_Receptor}}<html></span></a></dd>
 +
<dd id="pic3"><a id="text3" title="Key Lock Antikey" href="#"><span></html>{{Team:KULeuven/Components/Key_Lock_Antikey}}<html></span></a></dd>
 +
<dd id="pic4"><a id="text4" title="Vanillin Production" href="#"><span></html>{{Team:KULeuven/Components/Vanillin_Production}}<html></span></a></dd>
 +
<dd id="pic5"><a id="text5" title="CEO Introduction" href="blabla"></a></dd>
 +
</dl>
 +
</div>
 +
</center>
 +
</html>
-
'''Overige:'''
+
== Abstract ==
-
*pH
+
-
*O2
+
-
===Andere ideeën:===
+
‘''Essencia coli''’ is a vanillin producing bacterium equipped with a control system that keeps the concentration of vanillin at a constant level. The showpiece of the project is the feedback mechanism. Vanillin synthesis is initiated by irradiation with blue light. The preferred concentration can be modulated using the intensity of that light. At the same time the bacterium measures the amount of vanillin outside the cell and controls its production to maintain the set point. The designed system is universal in nature and has therefore potential benefits in different areas. The concept can easily be applied to other flavours and odours. In fact, any application that requires a constant concentration of a molecular substance is possible.
-
*LCD idee
+
 
-
**polarisatie door L en R moleculen, een ervan afbreken wat de verhouding tussen de 2 veranderd
+
{{Team:KULeuven/Common2/PageFooter}}
-
*Geur bacterie
+
-
**Vanille geur
+
-
**biobricks
+
-
***<partinfo>BBa_J45600</partinfo> (Stationary phase banana odor biosynthetic system)
+
-
**Meten van vanille
+

Latest revision as of 10:13, 19 October 2009

Sandbox

Team:KULeuven/Sandbox/Design1 Team:KULeuven/Sandbox/Design2


Blue Light Receptor

The receptor senses the blue light to which the bacteria are exposed. By choosing the light intensity, the wanted vanillin concentration is set. Upon photo-excitation the receptorprotein YcgF dimerizes and interacts directly with the repressor YcgE. This protein is bound to the promoter-region of the key-gene and inhibits its transcription. The dimerized YcgF acts as an anti-repressor and releases YcgE from the DNA. Thereupon, the transcribed key activates vanillin production, which is proportional to the entered intensity of the blue light.

Vanillin Receptor

The vanillin receptor senses the vanillin concentration outside the cell. This information is needed to create the feedback loop that controls vanillin synthesis. The receptor consists of two proteins: virA and virG. In the presence of vanillin, virA binds a phosphor and transfers it to virG. In turn, the phosphorylated VirG binds to a so-called vir box sequence, triggering transcription of antikey. The more antikey is produced, the more it can anneal to the key and the less vanillin is produced. This process goes on until there’s an equilibrium between measured and wanted concentration.

Key Lock Antikey

The key/antikey system compares the signal from the blue light and vanillin receptor in order to control vanillin production. The more the measured amount of vanillin exceeds the wanted amount (set by the blue light intensity), the less vanillin is produced. After blue light irradiation, the key is transcribed and ‘unlocks’ the vanillin synthesis pathway. In response to the produced vanillin, the vanillin receptor then activates transcription of the antikey. Key and antikey are complementary RNA-strands: their annealing is favoured over the reaction between key en lock leading to vanillin synthesis.

Vanillin Production

A vanilla odour is created by synthesizing the molecule Vanillin. The starting point is tyrosine, an amino acid produced endogenously in E.coli. The subsequent pathway involves a combination of five enzymes. By locking both the transcription of the first and the third enzyme we prevent vanillin synthesis without the presence of the key.

Abstract

Essencia coli’ is a vanillin producing bacterium equipped with a control system that keeps the concentration of vanillin at a constant level. The showpiece of the project is the feedback mechanism. Vanillin synthesis is initiated by irradiation with blue light. The preferred concentration can be modulated using the intensity of that light. At the same time the bacterium measures the amount of vanillin outside the cell and controls its production to maintain the set point. The designed system is universal in nature and has therefore potential benefits in different areas. The concept can easily be applied to other flavours and odours. In fact, any application that requires a constant concentration of a molecular substance is possible.