Team:BIOTEC Dresden

From 2009.igem.org

(Difference between revisions)
 
(35 intermediate revisions not shown)
Line 1: Line 1:
-
{|align="justify"
+
{{:Team:BIOTEC_Dresden/NewTemplateMain}}
 +
{{:Team:BIOTEC_Dresden/NewTemplateNoBar}}
-
|We are 9 people from Dresden who study Nanobiophysics, Molecular Engineering and Physics. We came from different countries: Germany, India, Russia, Poland and Colombia. Our backgrounds are biology, biotechnology and physics. We are cool - soon we'll provide some evidence with our pictures and the project details :)
 
-
|[[Image:Biotec tudd logo rgb.jpg|200px|right|frame]]
 
-
|-
 
-
|
 
-
Our project: Biologically synthesized silver tags in artificial cells
 
-
|[[Image:Team.png|right|frame|Your team picture]]
+
===<center>Factory-on-a-chip: Temporal and spatial control of protein synthesis </center>===
-
|-
+
-
|
+
-
|align="center"|[[Team:BIOTEC_Dresden | Team Example]]
+
-
|}
+
-
<!--- The Mission, Experiments --->
+
===<center>by ''in vitro'' recombination inside picoliter reactors</center>===
-
{| style="color:#1b2c8a;background-color:#0c6;" cellpadding="3" cellspacing="1" border="1" bordercolor="#fff" width="62%" align="center"
+
 
-
!align="center"|[[Team:BIOTEC_Dresden|Home]]
+
 
-
!align="center"|[[Team:BIOTEC_Dresden/Team|The Team]]
+
<br>
-
!align="center"|[[Team:BIOTEC_Dresden/Project|The Project]]
+
<br>
-
!align="center"|[[Team:BIOTEC_Dresden/Parts|Parts Submitted to the Registry]]
+
 
-
!align="center"|[[Team:BIOTEC_Dresden/Modeling|Modeling]]
+
Organizing matter on micro- and nano-scale requires specialized tools that control how components are assembled, when and where they are added, and how the product is transported. Our factory-on-a-chip is designed to do just that. In this project we conduct a two-step assembly process of biological and metallic components in microvesicles of picolitre reaction volumes.
-
!align="center"|[[Team:BIOTEC_Dresden/Notebook|Notebook]]
+
 
-
|}
+
<html>
 +
<img src="https://static.igem.org/mediawiki/2009/4/4b/Anya_rabota_3.jpg" width="700" height="460" border="0" usemap="#map" />
 +
 
 +
<map name="map">
 +
<!-- #$-:Image map file created by GIMP Image Map plug-in -->
 +
<!-- #$-:GIMP Image Map plug-in by Maurits Rijk -->
 +
<!-- #$-:Please do not edit lines starting with "#$" -->
 +
<!-- #$VERSION:2.3 -->
 +
<!-- #$AUTHOR:Daniel Herde  -->
 +
<area shape="poly" coords="394,332,325,335,289,309,289,206,367,203,391,221" alt="Timer" href="https://2009.igem.org/Team:BIOTEC_Dresden/Notebook_Recombinase" />
 +
<area shape="poly" coords="84,326,42,343,39,282,84,263,100,263,101,200,215,197,215,264,285,259,282,319" alt="Vesicles" href="https://2009.igem.org/Team:BIOTEC_Dresden/Notebook_Vesicles" />
 +
<area shape="poly" coords="40,271,92,252,93,149,30,140" alt="Contact" href="https://2009.igem.org/Team:BIOTEC_Dresden/Contact_v2" />
 +
<area shape="poly" coords="115,184,202,183,201,106,115,109" alt="Modeling" href="https://2009.igem.org/Team:BIOTEC_Dresden/Modeling_v2" />
 +
<area shape="poly" coords="279,163,355,162,351,103,277,105" alt="Team" href="https://2009.igem.org/Team:BIOTEC_Dresden/Team_v2" />
 +
<area shape="poly" coords="386,96,357,113,362,158,391,179,418,150,416,112" alt="Brainstorming" href="https://2009.igem.org/Team:BIOTEC_Dresden/Brainstorm" />
 +
<area shape="poly" coords="668,339,676,239,627,225,625,269,526,272,524,261,506,235,434,236,434,264,408,265,410,319,435,318,463,340,529,339,527,312,631,315,630,321,631,321" alt="Silver Nanoparticles" href="https://2009.igem.org/Team:BIOTEC_Dresden/Notebook_SilverNano" />
 +
<area shape="poly" coords="83,394,90,363,76,344,25,354,6,373,9,445,58,408" alt="Biobricks" href="http://partsregistry.org/cgi/partsdb/pgroup.cgi?pgroup=iGEM2009&amp;amp;group=BIOTEC_Dresden" />
 +
<area shape="poly" coords="595,202,592,122,527,124,529,207" alt="Lab Notebook" href="https://2009.igem.org/Team:BIOTEC_Dresden/Notebook_v2" />
 +
<area shape="poly" coords="698,202,609,219,607,121,695,88" alt="Outreach" href="https://2009.igem.org/Team:BIOTEC_Dresden/Outreach_v2" />
 +
</map>
 +
</html>
 +
 
 +
Production and packaging in picolitre reactors allows for precise control of all components of the product. The  reactors are vesicles moving through a microfluidic chamber. The transparency of the reactors and flow chamber enables us to monitor the whole production process. Enclosed in the vesicles are a synthetic in-vitro transcription-translation kit, a plasmid coding for a genetic timer and a modified protein, as well as raw materials for silver nanoparticles.
 +
 
 +
The genetic timer determines the onset of transcription and marks the beginning of the production process. It is a genetic circuit based on Flp recombinase. The timer is set off depending on the distance between two recombination sites. A genetic timer allows to add components  sequentially or at a specific time.
 +
 
 +
The protein we express is a GFP tagged with a sequence which is known to nucleate silver nanoparticle formation. An engineer should be able to use any raw material for his product to have the desired properties. Yet traditionally,  there is a pronounced distinction between classical and biological engineering. We try to overcome this schism by integrating protein expression and sequence-specific metallization of our modified protein with silver in one manufacturing process.
 +
 
 +
{{:Team:BIOTEC_Dresden/NewTemplateEnd}}

Latest revision as of 00:39, 22 October 2009


Factory-on-a-chip: Temporal and spatial control of protein synthesis

by in vitro recombination inside picoliter reactors



Organizing matter on micro- and nano-scale requires specialized tools that control how components are assembled, when and where they are added, and how the product is transported. Our factory-on-a-chip is designed to do just that. In this project we conduct a two-step assembly process of biological and metallic components in microvesicles of picolitre reaction volumes.

Timer Vesicles Contact Modeling Team Brainstorming Silver Nanoparticles Biobricks Lab Notebook Outreach

Production and packaging in picolitre reactors allows for precise control of all components of the product. The reactors are vesicles moving through a microfluidic chamber. The transparency of the reactors and flow chamber enables us to monitor the whole production process. Enclosed in the vesicles are a synthetic in-vitro transcription-translation kit, a plasmid coding for a genetic timer and a modified protein, as well as raw materials for silver nanoparticles.

The genetic timer determines the onset of transcription and marks the beginning of the production process. It is a genetic circuit based on Flp recombinase. The timer is set off depending on the distance between two recombination sites. A genetic timer allows to add components sequentially or at a specific time.

The protein we express is a GFP tagged with a sequence which is known to nucleate silver nanoparticle formation. An engineer should be able to use any raw material for his product to have the desired properties. Yet traditionally, there is a pronounced distinction between classical and biological engineering. We try to overcome this schism by integrating protein expression and sequence-specific metallization of our modified protein with silver in one manufacturing process.

Retrieved from "http://2009.igem.org/Team:BIOTEC_Dresden"