Team:Paris/Transduction overview

From 2009.igem.org

(Difference between revisions)
(Membrane fusion: Main)
 
(39 intermediate revisions not shown)
Line 1: Line 1:
-
<span/ id="bottom">[https://2009.igem.org/ iGEM ] > [[Team:Paris#top | Paris]] > [[Team:Paris/Transduction_overview#top | Reception]] > [[Team:Paris/Transduction_overview#bottom | Overview]]
+
<span/ id="bottom">[https://2009.igem.org/ iGEM ] > [[Team:Paris#top | Paris]] > [[Team:Paris/Transduction_overview#top | Receiving the message]] > [[Team:Paris/Transduction_overview#bottom | Membrane fusion]]
{{Template:Paris2009}}
{{Template:Paris2009}}
{{Template:Paris2009_menu4}}
{{Template:Paris2009_menu4}}
-
== Overview  ==
+
 
-
* [[Team:Paris/Transduction_overview#Overview#bottom | Introduction]]
+
 
-
* [[Team:Paris/Transduction_overview_fusion#bottom |A. Fusion ]]
+
 
-
** [[Team:Paris/Transduction_overview_fusion#A.1 Jun/Fos|A.1 jun/fos]]
+
==Membrane fusion: Main==
-
** [[Team:Paris/Transduction_overview_fusion#A.2 G3P|A.2 G3P]]
+
-
** [[Team:Paris/Transduction_overview_fusion#A.3 Snares |A.3 Snares]]
+
-
* [[Team:Paris/Transduction_overview_transduction#bottom |B. Transduction]]
+
-
** [[Team:Paris/Transduction_overview_transduction#B.1 ABC transporters|B.1 ABC transporters]]
+
-
** [[Team:Paris/Transduction_overview_transduction#B.2 Two-component system|B.2  Two Component System]]
+
-
* [[Team:Paris/Transduction_overview_strategy#bottom |C. Our strategy]]
+
-
* [[Team:Paris/Transduction_overview_construction#bottom |D. Construction]]
+
<html>
<html>
 +
<style type="text/css">
 +
#left-side {
 +
    position: absolute;
 +
    height: 23px;
 +
    width: 30px;
 +
    top: 0px;
 +
    left: 130px;
 +
    margin-top:10px;
 +
    padding-top: 7px;
 +
    background: url(https://static.igem.org/mediawiki/2009/1/1b/Left_menu_pari.png);
 +
    z-index:4;
 +
}
 +
 +
#middle-side {
 +
    height: 25px;
 +
    width: 380px;
 +
    position: absolute;
 +
    top: 0px;
 +
    left: 140px;
 +
    margin-top:10px;
 +
    padding-top: 5px;
 +
    background: #dadada;
 +
    z-index:5;
 +
}
 +
 +
#right-side {
 +
    position: absolute;
 +
    height: 23px;
 +
    width: 30px;
 +
    margin-top:10px;
 +
    padding-top: 7px;
 +
    top: 0px;
 +
    left: 510px;
 +
    background: url(https://static.igem.org/mediawiki/2009/4/40/Right_menu_paris.png);
 +
    z-index:4;
 +
}
 +
 +
a.menu_sub {
 +
    padding-left: 7px;
 +
    padding-right: 7px;
 +
}
 +
 +
a.menu_sub_active {
 +
    padding-left: 7px;
 +
    padding-right: 7px;
 +
    color:#b0310e;
 +
    font-weight:bold;
 +
}
 +
</style>
 +
<div id="left-side"></div>
 +
<div id="middle-side"><center>
 +
<a class="menu_sub_active"href="https://2009.igem.org/Team:Paris/Transduction_overview#bottom"> Main </a>|
 +
<a class="menu_sub"href="https://2009.igem.org/Team:Paris/Transduction_overview_fusion#bottom"> Fusion</a>|
 +
<a class="menu_sub"href="https://2009.igem.org/Team:Paris/Transduction_overview_strategy#bottom"> Our strategy</a>|
 +
<a class="menu_sub"href="https://2009.igem.org/Team:Paris/Transduction_overview_construction#bottom"> Construction</a>
 +
</center>
</div>
</div>
-
<div id="paris_content_boxtop">
+
<div id="right-side"></div>
-
</div>
+
-
<div id="paris_content">
+
</html>
</html>
-
===Introduction===
 
-
This part of the project was focus on two points:
+
This part of the project was focus on a precise point
-
*The fusion between the OMVs and the targeted bacteria.
+
*[[Team:Paris/Transduction_overview_fusion#bottom |The fusion between the OMVs and the targeted bacteria.]]
-
*The activation of the transcription of a genetic construction after fusionning the OMVs with the outer membrane of the receiving bacterium.
+
We have planned to explore three different method :
-
The sinequanone conditions : we tried to achieve this aim without sacrifying important proprieties of our message : specific, repeatable , multidirectional.
+
'''''With the Jun/Fos dimere:'''''
 +
Jun and Fos are able to form an heterodimer which has a high stability and Jun can dimerize with another Jun (thanks to their leucine zipper motif).
 +
After mutations into the leucine zipper motif of Jun (that allow the Jun/Fos dimerization but avoid the Jun/Jun homodimer formation), we wanted to fuse it to AIDA (an ABC transporter) to send them to the extern membrane of bacteria.
-
It seems that we have two possible ways : the ABC transporters or the two component systems .
+
'''''With G3P :'''''
 +
The viral protein known as G3P is naturally exposed at the surface of the filamentous bacteriophage which enable it to get in the bacteria. The M13 phage has a high affinity for E.coli, and if we could place its G3p on the surface of the vesicles it could activate the fusion with the Outer membrane of the targeted bacteria.
 +
In order to target the G3P at the surface of of the vesicles, we fuse it to the OmpA- Linker protein (created by the Warsaw team)
-
ABC transporters and two component systems are natural transport systems (export or import) of nutriments or toxines, and even information, the mecanism is mostly unknown but the DNA-containing OMVs  could be a useful mean of information transport.  Here for information about [[Team:Paris/Transduction_overview_transduction#B.1_ABC_transporters | ABC transporter ]] and [[Team:Paris/Transduction_overview_transduction#B.2 Two-component system| Two Component System]]
 
 +
'''''With the SNARE system:'''''
 +
Intracellular membrane fusion in eukaryotes requires SNARE (soluble N-ethylmaleimide-sensitive-factor attachment protein receptor) proteins that form complexes bridging the two membranes. To allow this fusion, the perfect conformation of all protein that composed the SNARE complex is an obligation. Untill now, no one cloned this complex into bacteria. We thought that it will be a very "dangerous way" to go for our project, so we decided to focus our effort on the Jun/Fos strategy and the G3P one.
-
<html>
 
-
</div>
 
-
<div id="paris_content_boxtop">
 
-
</div>
 
-
<div id="paris_content">
 
-
</html>
 
-
 
-
====References====
 
-
<ol class="references">
 
-
<li> [[Team:Paris/Transduction_overview#1 | ^]] D-ribose metabolism in Escherichia coli K-12: genetics, regulation, and transport. Lopilato JE & Beckwith JR. 1984 -  [http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=6327616 6327616]</li>
 
-
<li> [[Team:Paris/Transduction_overview#2 | ^]] Signal transfer through three compartments: transcription initiation of the Escherichia coli ferric citrate transport system from the cell surface. Härle C & Braun V. 1995 -  [http://www.ncbi.nlm.nih.gov/pubmed/7729419 7729419]</li>
 
-
<li> [[Team:Paris/Transduction_overview#3 | ^]] A comparative analysis of ABC transporters in complete microbial genomes. Tomii K & Kanehisa M. 1998- [http://www.ncbi.nlm.nih.gov/pubmed/9799792 9799792]</li>
 
-
<li> [[Team:Paris/Transduction_overview#4 | ^]] The CpxRA signal transduction system of Escherichia coli: growth-related autoactivation and control of unanticipated target operons.De Wulf P & Lin EC.  1999 - [http://www.ncbi.nlm.nih.gov/pubmed/10542180 10542180]</li>
 
-
<li> [[Team:Paris/Transduction_overview#5 | ^]] Two-component signal transduction. Stock AM & Goudreau PN. 2000- [http://www.ncbi.nlm.nih.gov/pubmed/10966457 10966457]</li>
 
-
<li> [[Team:Paris/Transduction_overview#6 | ^]] Vesicle-mediated transfer of virulence genes from Escherichia coli O157:H7 to other enteric bacteria. Yaron S & Matthews KR. 2000- [http://www.ncbi.nlm.nih.gov/pubmed/11010892 11010892]</li>
 
-
<li> [[Team:Paris/Transduction_overview#7 | ^]] Periplasmic binding proteins: a versatile superfamily for protein engineering. Dwyer MA & Hellinga HW. 2004- [http://www.ncbi.nlm.nih.gov/pubmed/11010892 11010892]</li>
 
-
<li> [[Team:Paris/Transduction_overview#8 | ^]] Gene regulation by transmembrane signaling. Braun V & Sauter A. 2006- [http://www.ncbi.nlm.nih.gov/pubmed/16718597 16718597]</li>
 
-
<li> [[Team:Paris/Transduction_overview#9 | ^]] Signal transduction: networks and integrated circuits in bacterial cognition. Baker MD & Stock JB 2007- [http://www.ncbi.nlm.nih.gov/pubmed/18054766 18054766]</li>
 
-
<li> [[Team:Paris/Transduction_overview#10 | ^]] Systems biology of bacterial chemotaxis. Baker MD & Stock JB. 2007- [http://www.ncbi.nlm.nih.gov/pubmed/16529985 16529985]</li>
 
-
<li> [[Team:Paris/Transduction_overview#11 | ^]] Control of the transcription of a short gene encoding a cyclic peptide in Streptococcus thermophilus: a new quorum-sensing system? Ibrahim M & Monnet V. 2007- [http://www.ncbi.nlm.nih.gov/pubmed/17921293 17921293]</li>
 
-
<li> [[Team:Paris/Transduction_overview#12 | ^]] SRP and Sec pathway leader peptides for antibody phage display and antibody fragment production in E. coli. Thie H & Hust M. 2008- [http://www.ncbi.nlm.nih.gov/pubmed/18504019 18504019]</li>
 
-
<li> [[Team:Paris/Transduction_overview#13 | ^]] Signal transduction and adaptive regulation through bacterial two-component systems: the Escherichia coli AtoSC paradigm. Kyriakidis DA & Tiligada E. 2009- [http://www.ncbi.nlm.nih.gov/pubmed/19198978 19198978]</li>
 
-
<li> [[Team:Paris/Transduction_overview#14 | ^]] comparative analysis of ABC transporter. Tomii & Kanehisa 2009- [http://genome.cshlp.org/content/8/10/1048.full.html#ref-list-1 pdf-link]</li>
 
-
</ol>
+
{{Template:Paris2009_guided|Production_overview#bottom|Transduction_overview_fusion#bottom}}

Latest revision as of 15:06, 21 October 2009

iGEM > Paris > Receiving the message > Membrane fusion



Membrane fusion: Main


This part of the project was focus on a precise point

We have planned to explore three different method :


With the Jun/Fos dimere: Jun and Fos are able to form an heterodimer which has a high stability and Jun can dimerize with another Jun (thanks to their leucine zipper motif). After mutations into the leucine zipper motif of Jun (that allow the Jun/Fos dimerization but avoid the Jun/Jun homodimer formation), we wanted to fuse it to AIDA (an ABC transporter) to send them to the extern membrane of bacteria.


With G3P : The viral protein known as G3P is naturally exposed at the surface of the filamentous bacteriophage which enable it to get in the bacteria. The M13 phage has a high affinity for E.coli, and if we could place its G3p on the surface of the vesicles it could activate the fusion with the Outer membrane of the targeted bacteria.

In order to target the G3P at the surface of of the vesicles, we fuse it to the OmpA- Linker protein (created by the Warsaw team)


With the SNARE system: Intracellular membrane fusion in eukaryotes requires SNARE (soluble N-ethylmaleimide-sensitive-factor attachment protein receptor) proteins that form complexes bridging the two membranes. To allow this fusion, the perfect conformation of all protein that composed the SNARE complex is an obligation. Untill now, no one cloned this complex into bacteria. We thought that it will be a very "dangerous way" to go for our project, so we decided to focus our effort on the Jun/Fos strategy and the G3P one.


Open book.gif

← Previous - Next →