Team:KULeuven/Design/Key Antikey
From 2009.igem.org
Bart Bosmans (Talk | contribs) |
Bart Bosmans (Talk | contribs) |
||
(2 intermediate revisions not shown) | |||
Line 2: | Line 2: | ||
{{Team:KULeuven/Common/SubMenu_Key_Antikey}} | {{Team:KULeuven/Common/SubMenu_Key_Antikey}} | ||
{{Team:KULeuven/Common2/EndHeader}} | {{Team:KULeuven/Common2/EndHeader}} | ||
+ | |||
+ | =Key Lock Antikey: Design= | ||
[[image:Biologie_antikey.png|center]] | [[image:Biologie_antikey.png|center]] | ||
Line 11: | Line 13: | ||
The mRNA key and lock sequences form a pair of riboregulators. The ''lock'' DNA is located directly upstream of the controlled gene’s RBS. It is folded into a stem-loop secondary structure which prevents access to the ribosome and inhibits translation. ''Keys'' are expressed from separate genes (in trans) and code for sequences complementary to the ''lock''. Upon annealing they unlock the ‘closed’ stem-loops, thereby exposing the RBS and permitting expression of the gene(s) downstream. | The mRNA key and lock sequences form a pair of riboregulators. The ''lock'' DNA is located directly upstream of the controlled gene’s RBS. It is folded into a stem-loop secondary structure which prevents access to the ribosome and inhibits translation. ''Keys'' are expressed from separate genes (in trans) and code for sequences complementary to the ''lock''. Upon annealing they unlock the ‘closed’ stem-loops, thereby exposing the RBS and permitting expression of the gene(s) downstream. | ||
- | + | ||
The most efficient key is a combination of the {{kulpart|BBa_J23008}} and {{kulpart|BBa_J23009}} ''keys''. They are placed behind the blue light promoter to ensure transcription after blue light irradiation. {{kulpart|BBa_B0015}} is used as terminator. This brick consists of {{kulpart|BBa_B0010}} and {{kulpart|BBa_B0012}} and is most commonly used. One {{kulpart|BBa_J23078}} ''lock'' is placed before ''sam5'' and'' sam8'' genes and another before ''COMT'' to guarantee maximal efficiency of the key/lock system. These genes are part of the vanillin production pathway. Therefore, after a blue light activates transcription of the key, vanillin synthesis starts. This also means that any desired vanillin concentration can be adjusted just by altering irradiation intensity. | The most efficient key is a combination of the {{kulpart|BBa_J23008}} and {{kulpart|BBa_J23009}} ''keys''. They are placed behind the blue light promoter to ensure transcription after blue light irradiation. {{kulpart|BBa_B0015}} is used as terminator. This brick consists of {{kulpart|BBa_B0010}} and {{kulpart|BBa_B0012}} and is most commonly used. One {{kulpart|BBa_J23078}} ''lock'' is placed before ''sam5'' and'' sam8'' genes and another before ''COMT'' to guarantee maximal efficiency of the key/lock system. These genes are part of the vanillin production pathway. Therefore, after a blue light activates transcription of the key, vanillin synthesis starts. This also means that any desired vanillin concentration can be adjusted just by altering irradiation intensity. | ||
- | + | [[Image:Key_lock_antikey.png|center|thumb|500px]] | |
{{Team:KULeuven/Common2/PageFooter}} | {{Team:KULeuven/Common2/PageFooter}} |
Latest revision as of 07:36, 12 October 2009
Key Lock Antikey: Design
The key and antikey system perform a subtraction of the blue light signal and the vanillin receptor signal. The result controls the vanillin production. In biological terms, the subtraction translates as the annealing of complementary RNA strands, the key and the antikey. This reaction is favoured over the reaction between the key and the lock leading to vanillin synthesis. In this way we try to perform the subtraction before inducing production of vanillin.
The biological equivalent of a subtraction can only yield a positive number, so one can only subtract a small from a large amount. Because we can only actively produce vanillin, we have to subtract the measured quantity of vanillin from the wanted quantity, or in other words, the amount of antikey produced by the vanillin receptor from the amount of key produced by the blue light sensor.
The mRNA key and lock sequences form a pair of riboregulators. The lock DNA is located directly upstream of the controlled gene’s RBS. It is folded into a stem-loop secondary structure which prevents access to the ribosome and inhibits translation. Keys are expressed from separate genes (in trans) and code for sequences complementary to the lock. Upon annealing they unlock the ‘closed’ stem-loops, thereby exposing the RBS and permitting expression of the gene(s) downstream.
The most efficient key is a combination of the and keys. They are placed behind the blue light promoter to ensure transcription after blue light irradiation. is used as terminator. This brick consists of and and is most commonly used. One lock is placed before sam5 and sam8 genes and another before COMT to guarantee maximal efficiency of the key/lock system. These genes are part of the vanillin production pathway. Therefore, after a blue light activates transcription of the key, vanillin synthesis starts. This also means that any desired vanillin concentration can be adjusted just by altering irradiation intensity.