Team:Imperial College London

From 2009.igem.org

(Difference between revisions)
Line 3: Line 3:
For iGEM 2009 the Imperial College London team present you with <b><i>The E.ncapsulator</i></b>; a versatile manufacturing and delivery platform by which therapeutics can be reliably targeted to the intestine.  
For iGEM 2009 the Imperial College London team present you with <b><i>The E.ncapsulator</i></b>; a versatile manufacturing and delivery platform by which therapeutics can be reliably targeted to the intestine.  
-
Our <i>E.coli</i> chassis progresses through a series of defined stages culminating in the production of a safe, inanimate pill. This sequential process involves drug production, protective encapsulation and genome deletion. The temporal transition between each of these stages is controlled by physical and chemical methods, showing that we have taken an engineering approach to tackle this problem.  
+
Our <i>E.coli</i> chassis progresses through a series of defined stages culminating in the production of a safe, inanimate pill. This sequential process involves drug production, protective encapsulation and genome deletion. The temporal transition between each of these stages is controlled by physical and chemical methods, showing a clear engineering approach to tackle this problem.
 +
 
 +
<!--The temporal transition between each of these stages is controlled by physical and chemical methods, showing that we have taken an engineering approach to tackle this problem. -->
<b><i>The E.ncapsulator</i></b> provides an innovative method to deliver any biologically synthesisable compound and bypasses the need for expensive storage, packaging and purification processes. <b><i>The E.ncapsulator</i></b> is an attractive candidate for commercial pill development and demonstrates the massive manufacturing potential in Synthetic Biology.
<b><i>The E.ncapsulator</i></b> provides an innovative method to deliver any biologically synthesisable compound and bypasses the need for expensive storage, packaging and purification processes. <b><i>The E.ncapsulator</i></b> is an attractive candidate for commercial pill development and demonstrates the massive manufacturing potential in Synthetic Biology.
Line 9: Line 11:
<br>
<br>
-
<center><b>Pushed for time? Click on the arrow to begin a fast tour of the project and learn <br>about its modules in more detail: </b></center>
+
<center><b><!--Pushed for time?--> Click on the arrow to join us on a <!--fast--> tour of the project: <!--and learn <br>about its modules in more detail:--> </b></center>
<html><center><a href="https://2009.igem.org/Team:Imperial_College_London/Project_Overview"><img width=150px src="https://static.igem.org/mediawiki/2009/5/53/II09_MainPage_ArrowRight.png"></a>
<html><center><a href="https://2009.igem.org/Team:Imperial_College_London/Project_Overview"><img width=150px src="https://static.igem.org/mediawiki/2009/5/53/II09_MainPage_ArrowRight.png"></a>
</html>
</html>

Revision as of 17:14, 17 October 2009

The E.ncapsulator

For iGEM 2009 the Imperial College London team present you with The E.ncapsulator; a versatile manufacturing and delivery platform by which therapeutics can be reliably targeted to the intestine.

Our E.coli chassis progresses through a series of defined stages culminating in the production of a safe, inanimate pill. This sequential process involves drug production, protective encapsulation and genome deletion. The temporal transition between each of these stages is controlled by physical and chemical methods, showing a clear engineering approach to tackle this problem.


The E.ncapsulator provides an innovative method to deliver any biologically synthesisable compound and bypasses the need for expensive storage, packaging and purification processes. The E.ncapsulator is an attractive candidate for commercial pill development and demonstrates the massive manufacturing potential in Synthetic Biology.

Click on the arrow to join us on a tour of the project:




These links may be useful to quickly browse our results and achievements:


Mr. Gene   Geneart   Clontech   Giant Microbes