Team:MIT
From 2009.igem.org
(→Project Overview) |
|||
Line 24: | Line 24: | ||
Our system takes advantage of the machinery used by plants and algae to respond to changing light conditions. Small pigmented proteins called phytochromes allow plants and algae to sense the amount and quality of the light available to them and to adjust rates of transcription accordingly. They are composed of a small pigment called a chromophore covalently bonded to a polypeptide. PhyB, our phytochrome of interest, binds to a chromophore called phycocyanobilin, or PCB. In red light, PhyB changes conformation into it’s active form and can bind to a transcription factor called PIF3. A pulse of far-red light returns the phytochrome to its inactive state. This mechanism provides the foundation of a a fast, reversible switch. | Our system takes advantage of the machinery used by plants and algae to respond to changing light conditions. Small pigmented proteins called phytochromes allow plants and algae to sense the amount and quality of the light available to them and to adjust rates of transcription accordingly. They are composed of a small pigment called a chromophore covalently bonded to a polypeptide. PhyB, our phytochrome of interest, binds to a chromophore called phycocyanobilin, or PCB. In red light, PhyB changes conformation into it’s active form and can bind to a transcription factor called PIF3. A pulse of far-red light returns the phytochrome to its inactive state. This mechanism provides the foundation of a a fast, reversible switch. | ||
+ | |||
+ | [[Image:project_overall_anim.gif]] | ||
Revision as of 03:40, 20 October 2009
We are the 2009 MIT iGEM page.
An aesthetics makeover of this page is due sometime between now and the jamboree.
Project DescriptionProject OverviewTo maximize control over a biological system, it would beneficial to have quick, reversible control over each step in gene expression, from transcription to translation to post-translational processing. Much work has been done to create switchable promoters, toggled by pulses of light, to control rates of transcription for genes of interest. The MIT iGEM team aims to take this concept and apply it to post-translational control, more specifically protein targeting in yeast. Our goal is to make a system in which a pulse of light causes a protein of interest to localize to one part of the cell. When pulsed with another wavelength of light, the protein will diffuse. In this way, a user can easily control both localization and delocalization of a protein of interest.
|
MembersMIT Department of Biological Engineering Undergraduates
Graduate
Professors
|