Team:TorontoMaRSDiscovery

From 2009.igem.org

(Difference between revisions)
(Objectives)
(The Encapsulator)
Line 12: Line 12:
=The Encapsulator=
=The Encapsulator=
-
 
+
A key challenge in metabolic engineering is to improve productivity and yield.  Potential applications range from the production of valuable compounds such as therapeutic molecules and biofuels to the degradation of toxic wastes.  There is increasing recognition that spatial organization can play an important role in optimizing pathway efficiency.  Specifically, the spatial co-localization of consecutive enzymes in a pathway can result in efficient translocation of substrates between enzymes, an effect known as enzyme "channeling".  Here we report the design, modeling and construction of a bacterial micro-organelle based system for the targeted co-localization of selected enzymes.  Our "Encapsulator" represents a fundamentally new class of parts which, in nature consist of metabolic enzymes encased within a multi-protein shell reminiscent of a viral capsid.  Micro-compartments based on encapsulin (and similar proteins) represent an experimentally amenable system to investigate the effects of channeling in potential downstream applications.
[[image:MarsMedal(small).png|right|frame|We are proud to support our colleagues in Valencia!]]
[[image:MarsMedal(small).png|right|frame|We are proud to support our colleagues in Valencia!]]

Revision as of 19:49, 19 October 2009

Top(nolink).png

Home The Team The Project Parts Submitted to the Registry Modeling Bioinformatics Notebook


The Encapsulator

A key challenge in metabolic engineering is to improve productivity and yield. Potential applications range from the production of valuable compounds such as therapeutic molecules and biofuels to the degradation of toxic wastes. There is increasing recognition that spatial organization can play an important role in optimizing pathway efficiency. Specifically, the spatial co-localization of consecutive enzymes in a pathway can result in efficient translocation of substrates between enzymes, an effect known as enzyme "channeling". Here we report the design, modeling and construction of a bacterial micro-organelle based system for the targeted co-localization of selected enzymes. Our "Encapsulator" represents a fundamentally new class of parts which, in nature consist of metabolic enzymes encased within a multi-protein shell reminiscent of a viral capsid. Micro-compartments based on encapsulin (and similar proteins) represent an experimentally amenable system to investigate the effects of channeling in potential downstream applications.

We are proud to support our colleagues in Valencia!