Team:Calgary/Lab/Reporter

From 2009.igem.org

(Difference between revisions)
Line 83: Line 83:
<br>
<br>
<br>
<br>
-
The functionality of the reporter circuit was tested by measuring the fluorscence of reporter circuit together with LuxO D47E (K218017) mutant, and this fluorscence was compared to the fluorscence of our positive control (R0040 + I13500).  
+
CHARACTERIZATION
-
The following is the protocol of the fluorescence reading.
+
<br>
 +
The functionality of the reporter circuit was tested by transforming it into the same cell as the LuxO D47E (K218017) mutant and then measuring fluorescence. The expectation was such that without LuxO D47E, the reporter cells would have basal levels of fluorescence, but upon the addition of the mutant, fluorescence would increase. This is because  LuxO D47E mimics the phosphorylated and thus active form of LuxO and should bind to the qrr4 promoter and induce expression of GFP.  
<br>
<br>
<br><b>GFP fluorescent reading protocol</b>
<br><b>GFP fluorescent reading protocol</b>

Revision as of 16:27, 21 October 2009

University of Calgary

UNIVERSITY OF CALGARY



LAB INDEX
REPORTER CIRCUIT
The purpose of the reporter circuit is to test the functionality of the signalling circuit.



Reporter.png

Figure 1. Schematic diagram of reporter circuit. The reporter circuit is used to test whether the signalling circuit is functional. It has been designed and constructed with the qrr4 promoter followed by GFP. In the absence of AI-2, the end product of the signalling cascade is phospho-LuxO, which will bind to the qrr4 promoter and therefore produce fluorescence. In the presence of AI-2 however, the end product of the signalling cascade is LuxO, which will not bind to the qrr4 promoter, and therefore the colonies will not glow.

CHARACTERIZATION
The functionality of the reporter circuit was tested by transforming it into the same cell as the LuxO D47E (K218017) mutant and then measuring fluorescence. The expectation was such that without LuxO D47E, the reporter cells would have basal levels of fluorescence, but upon the addition of the mutant, fluorescence would increase. This is because LuxO D47E mimics the phosphorylated and thus active form of LuxO and should bind to the qrr4 promoter and induce expression of GFP.

GFP fluorescent reading protocol
1. Grow overnight cultures of each sample
2. Power on the Bio-tec Synergy HT plate reader, or another plate reader, and KC4 application.
3. On a black 96 well plate, aliquot samples in required wells.
4. Go to wizard, and change the reading parameters to the following settings:
Reader: absorbance
Reading type: Endpoint
Wavelength: 570nm (it is as close as it gets to OD600)
5. Click ok.
6. Again, go to wizard, then in layout, mark the wells that contain samples and blank. Click ok.
7. Press the read button
8. Match the OD600 levels by diluting with corresponding Luria-Bertani (LB) broth.
9. Measure OD600 again.
10. Once OD600 are matching for all samples, serial dilute them (1 in 10, 1 in 100). To serial dilute, aliquot 100uL of original culture into a new tube containing 900uL of corresponding LB broth (1 in 10). To make 1 in 100, aliquot 100uL of 1 in 10 dilution into a new tube containing 900uL of corresponding LB broth (1 in 100).
11. Go back to wizard, change the reading parameters to the following settings*:
Reader: Fluorescence
Reading type: Endpoint
Excitation: 485/20
Emission: 528/20
Optics position: Top
Sensitivity: automatic adjustment, scale to high or low well.
Top probe vertical offset: 3mm
12. Click ok.
13. Again, go to wizard, change the layout of the cells.
14. Read.
*GFP reading protocol was obtained from Minenesota State University
http://www.mnstate.edu/provost/GFPPlateReaderAssayProtocol.pdf

For an in depth look into the construction and testing of reporter circuit (complete with results) please read the paper below.