Team:Alberta/Project/Automation
From 2009.igem.org
Line 142: | Line 142: | ||
<img style="padding : 20px;" src="https://static.igem.org/mediawiki/2009/7/7d/UofA_diyAuto_dipPen.png" align="right" width ="35%"> | <img style="padding : 20px;" src="https://static.igem.org/mediawiki/2009/7/7d/UofA_diyAuto_dipPen.png" align="right" width ="35%"> | ||
- | + | <P> | |
- | </p> | + | The easiest and most feasible method for automating the BioByte Assembly Method involves the movement of beads from one well to the next on a 96 well plate, with each well containing a different solution, such as wash buffer or an individual byte. Therefore, as the magnet is dragged from well to well, bytes are continually added until a full length construct is generated. Another option would be to suspend the beads in one place and continually exchange the solutions surrounding the beads. However, due to the limitations of the Lego Mindstorm kit this option was not chosen. In the end, a 'dip pen' method was selected. A small rare earth magnet is secured to the end of a pipette tip. The magnet is lowered into the well, whereby the beads are attracted to the magnet. The pipette is then lifted up and placed in another well dragging the beads with it. The beads are then shaken off and allowed to sit in the solution whereby individual bytes may bind or the intermediate constructs are washed. This process is repeated until the full length linear construct is produced.</p> |
- | < | + | <P> |
The physical design of the robot was probably the most challenging and time consuming parts of the whole process. This was mainly owing to the fact that the plastic construction pieces and only lengths and sizes of the different types of pieces. Also a problem was the amount of 'flex' or 'wiggle' that you could get out of the plastic parts. This led to a few failed implementations that had to be completely disassembled and started again. The current physical implementation owes its inspiration to Hans Andersons sudoku solving robot (http://tiltedtwister.com/sudokusolver.html). This adapted design allowed for the necessary amount of precision for 'pen' to be positioned over the well, along with the advantage of not possessing a large number of points where the play in the gears and joints would become a problem. | The physical design of the robot was probably the most challenging and time consuming parts of the whole process. This was mainly owing to the fact that the plastic construction pieces and only lengths and sizes of the different types of pieces. Also a problem was the amount of 'flex' or 'wiggle' that you could get out of the plastic parts. This led to a few failed implementations that had to be completely disassembled and started again. The current physical implementation owes its inspiration to Hans Andersons sudoku solving robot (http://tiltedtwister.com/sudokusolver.html). This adapted design allowed for the necessary amount of precision for 'pen' to be positioned over the well, along with the advantage of not possessing a large number of points where the play in the gears and joints would become a problem. |
Revision as of 21:54, 21 October 2009
|
DIY AutomationOne of the main themes of this project, as well as iGEM in general, is the simplification of both the parts and the processes of molecular biology. This allows synthetic biology to bring relatively advanced biological techniques 'to the masses'. The Biobytes Assembly is very rigid and reliable; however, it is also very repetitive and tedious. This has triggered us to develop an automated mechanical system (ie. a robot) capable of speeding up and simplifying our methods. The overall goal is that our robot would be simple enough to be used by high school students. This would provide a valuable tool in biological education. It is also our goal to create a system that is versatile enough to be used in more advanced research labs, thereby decreasing the time needed for plasmid construction. |
The Robotic DeviceOur robot is built entirely from a single Lego Mindstorms kit, using only the standard pieces and hardware sold with the kit.
|
Hardware and Software
|
Getting to a Working Prototype
|
Results
|
Future Work
|
In the event that you want to build it yourself...
|