Team:Tokyo-Nokogen/Project
From 2009.igem.org
(Difference between revisions)
m |
|||
Line 84: | Line 84: | ||
</div><br> | </div><br> | ||
<tr> | <tr> | ||
- | <h3><p style="margin-left:50px; margin-right:50px"> The production of recombinant protein is an important step to many experiments. Unfortunately, procedures can often be quite laborious and annoying (e.g., centrifugation, sonication,…). Our goal is to use synthetic biology to provide an easy solution. We named our system the <I>Escherichia coli</I> auto protein synthesizer (ESCAPES). It takes advantage of four concepts: 1) light switches, 2) cellular self-aggregation, 3) autolysis, and 4) transcriptional signal counter. Click on the labels in the figure below for further details. With our ESCAPES system, we would only need to irradiate the cells | + | <h3><p style="margin-left:50px; margin-right:50px"> The production of recombinant protein is an important step to many experiments. Unfortunately, procedures can often be quite laborious and annoying (e.g., centrifugation, sonication,…). Our goal is to use synthetic biology to provide an easy solution. We named our system the <I>Escherichia coli</I> auto protein synthesizer (ESCAPES). It takes advantage of four concepts: 1) light switches, 2) cellular self-aggregation, 3) autolysis, and 4) transcriptional signal counter. Click on the labels in the figure below for further details. With our ESCAPES system, we would only need to irradiate the cells twice to produce a crude extract of our target protein. |
<table width="730" height="600" border="0" style="background:url(https://static.igem.org/mediawiki/2009/4/48/ESCAPeS1.png) no-repeat; margin-left:50px"> | <table width="730" height="600" border="0" style="background:url(https://static.igem.org/mediawiki/2009/4/48/ESCAPeS1.png) no-repeat; margin-left:50px"> |
Latest revision as of 03:57, 22 October 2009