Team:Alberta/Project/Modeling
From 2009.igem.org
Home World (Talk | contribs) |
Rpgguardian (Talk | contribs) |
||
Line 1: | Line 1: | ||
{{:Team:Alberta/Template3}} | {{:Team:Alberta/Template3}} | ||
+ | <html> | ||
+ | <head> | ||
+ | <style type="text/css"> | ||
+ | .b1f, .b2f, .b3f, .b4f{font-size:1px; overflow:hidden; display:block;} | ||
+ | .b1f {height:1px; background:#ADED7C; margin:0 5px;} | ||
+ | .b2f {height:1px; background:#ADED7C; margin:0 3px;} | ||
+ | .b3f {height:1px; background:#ADED7C; margin:0 2px;} | ||
+ | .b4f {height:2px; background:#ADED7C; margin:0 1px;} | ||
+ | .content {background: #ADED7C;} | ||
+ | .content div {margin-left: 5px;} | ||
+ | </style> | ||
+ | </head> | ||
+ | |||
+ | <div class="all"> | ||
+ | <div style="background:#FFFFFF"> | ||
+ | |||
+ | <!-- adjust table width, main background and padding between cells and edge of background --> | ||
+ | |||
+ | |||
+ | <table width=75% style="background:#FFFFFF; padding:2px;"> | ||
+ | |||
+ | <tr> | ||
+ | <td style="height: 400; padding-left: 10px; padding-right: 10px; padding-top: 11px;"> | ||
+ | <b class="b1f"></b><b class="b2f"></b><b class="b3f"></b><b class="b4f"></b> | ||
+ | <div class="Outreach"> | ||
+ | <div style="height: 400; background:#FFFFFF; colorou line-height:100% padding: 3px 0px;"> | ||
+ | <h1>Why build a minimal genome?</h1> | ||
+ | |||
+ | <!-- <div align="justify" style="padding-left:20px; padding-right:20px"> --> | ||
+ | <div align="justify"> | ||
+ | |||
+ | <font size="2"> | ||
+ | <P>Genomes are complex! Determining how simplified a genome can become enriches our understanding of the function and interactions of cellular components. Simplified cells can be used as a well characterized chasses for synthetic biology. Moreover, a simplified cell can be used to study cellular processes in a controlled, characterized genetic background. Finally, developing a minimal genome requires us to develop and optimize molecular methods of genome assembly. These methods can be then applied to other high through put biology. </P> | ||
+ | |||
+ | </font></div> | ||
+ | |||
+ | </div></div> | ||
+ | <b class="b4f"></b><b class="b3f"></b><b class="b2f"></b><b class="b1f"></b> | ||
+ | </td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <td style="height: 400; padding-left: 10px; padding-right: 10px; padding-top: 11px;"> | ||
+ | <b class="b1f"></b><b class="b2f"></b><b class="b3f"></b><b class="b4f"></b> | ||
+ | <div class="Why We Need Bioinformatics"> | ||
+ | <div style="height: 400; background:#FFFFFF; colorou line-height:100% padding: 3px 0px;"> | ||
+ | <h1>Why We Need Bioinformatics</h1> | ||
+ | |||
+ | <!-- <div align="justify" style="padding-left:20px; padding-right:20px"> --> | ||
+ | <div align="justify"> | ||
+ | |||
+ | <font size="2"> | ||
+ | |||
+ | <b> The size and complexity of the genome make bioinformatics analysis essential. We used bioinformatics to accomplish the following: </b> | ||
+ | |||
+ | <P> - review lists of essential genes in the literature and existing databases and compile a preliminary essential gene list </P> | ||
+ | <P> - model the metabolic reactions and net growth rate of E.coli with given gene sets. This identified additional metabolic genes essential to a minimal genome. </P> | ||
+ | <P> - identify knock out combinations that could be tested in the wet lab, to verify the accuracy of our metabolic model. </P> | ||
+ | <P> - select standardized promoters and terminators that would replace the natural promoters and terminators of essential genes. </P> | ||
+ | <P> - determine which promoter should be used with which gene, by analyzing expression level data. </P> | ||
+ | <P> - design primers to amplify all essential genes from genomic DNA. </P> | ||
+ | |||
+ | <b> These steps have all been completed, and are described on the following pages. </b> | ||
+ | |||
+ | <P> | ||
+ | </font></div> | ||
+ | |||
+ | </div></div> | ||
+ | <b class="b4f"></b><b class="b3f"></b><b class="b2f"></b><b class="b1f"></b> | ||
+ | </td> | ||
+ | </tr> | ||
+ | |||
+ | |||
+ | |||
+ | </table> | ||
+ | </div> | ||
+ | </HTML> | ||
+ | |||
+ | <html> | ||
+ | <head> | ||
+ | <style type="text/css"> | ||
+ | .b1f, .b2f, .b3f, .b4f{font-size:1px; overflow:hidden; display:block;} | ||
+ | .b1f {height:1px; background:#ADED7C; margin:0 5px;} | ||
+ | .b2f {height:1px; background:#ADED7C; margin:0 3px;} | ||
+ | .b3f {height:1px; background:#ADED7C; margin:0 2px;} | ||
+ | .b4f {height:2px; background:#ADED7C; margin:0 1px;} | ||
+ | .content {background: #ADED7C;} | ||
+ | .content div {margin-left: 5px;} | ||
+ | </style> | ||
+ | </head> | ||
+ | |||
+ | <div class="all"> | ||
+ | <div style="background:#FFFFFF"> | ||
+ | |||
+ | <!-- adjust table width, main background and padding between cells and edge of background --> | ||
+ | |||
+ | |||
+ | <table width=75% style="background:#FFFFFF; padding:2px;"> | ||
+ | |||
+ | <tr> | ||
+ | <td style="height: 400; padding-left: 10px; padding-right: 10px; padding-top: 11px;"> | ||
+ | <b class="b1f"></b><b class="b2f"></b><b class="b3f"></b><b class="b4f"></b> | ||
+ | <div class="Outreach"> | ||
+ | <div style="height: 400; background:#FFFFFF; colorou line-height:100% padding: 3px 0px;"> | ||
+ | <h1>Constraint Based Flux Analysis – Cobra Toolbox and SBML</h1> | ||
+ | |||
+ | <!-- <div align="justify" style="padding-left:20px; padding-right:20px"> --> | ||
+ | <div align="justify"> | ||
+ | |||
+ | <font size="2"> |
Revision as of 18:48, 14 September 2009
|
Why build a minimal genome?Genomes are complex! Determining how simplified a genome can become enriches our understanding of the function and interactions of cellular components. Simplified cells can be used as a well characterized chasses for synthetic biology. Moreover, a simplified cell can be used to study cellular processes in a controlled, characterized genetic background. Finally, developing a minimal genome requires us to develop and optimize molecular methods of genome assembly. These methods can be then applied to other high through put biology. |
Why We Need Bioinformatics
The size and complexity of the genome make bioinformatics analysis essential. We used bioinformatics to accomplish the following:
- review lists of essential genes in the literature and existing databases and compile a preliminary essential gene list - model the metabolic reactions and net growth rate of E.coli with given gene sets. This identified additional metabolic genes essential to a minimal genome. - identify knock out combinations that could be tested in the wet lab, to verify the accuracy of our metabolic model. - select standardized promoters and terminators that would replace the natural promoters and terminators of essential genes. - determine which promoter should be used with which gene, by analyzing expression level data. - design primers to amplify all essential genes from genomic DNA. These steps have all been completed, and are described on the following pages.
|
Constraint Based Flux Analysis – Cobra Toolbox and SBML |