Team:KULeuven/Project

From 2009.igem.org

(Difference between revisions)
(Miss Blue Vanilla: CEO of the Flagrance Factory)
(Miss Blue Vanilla: CEO of the Fragrance Factory)
Line 20: Line 20:
==Miss Blue Vanilla: CEO of the Fragrance Factory==
==Miss Blue Vanilla: CEO of the Fragrance Factory==
-
[[Image:Missblue.png|200px]]
+
 
 +
 
 +
[[Image:Missblue.png|200px]]<center>Please allow me to introduce myself
 +
 
 +
I’m a bacterium of smell and taste
 +
 
 +
I’ve been around for a long four months
 +
 
 +
Founded a factory, no time to waste
 +
 
 +
 
 +
I stuck around E. Coli
 +
 
 +
When I saw it was a time for a change
 +
 
 +
Rebuilt it with synthetic biology
 +
 
 +
To produce vanilla, isn’t that strange?
 +
 
 +
 
 +
I watched with glee
 +
 
 +
While the blue light and its receptor
 +
 
 +
Triggered the synthesis pathway
 +
 
 +
By means of a key
 +
 
 +
 
 +
I encode a sensor
 +
 
 +
Detect vanilla quantity
 +
 
 +
When concentration gets too high
 +
 
 +
I control it
 +
 
 +
By means of an antikey
 +
 
 +
 
 +
Pleased to meet you
 +
 
 +
Hope you guess my name
 +
 
 +
My team is from K.U.Leuven
 +
 
 +
My mission is iGEM
 +
 
 +
 
 +
Just as every part of the factory sketch 
 +
 
 +
Points you to my underlying science
 +
 
 +
As vanillin is my essence
 +
 
 +
Just call me '''''Essencia coli'''''
 +
 
 +
‘Cause I’m a CEO in need of some fragrance
 +
</center>
{{Team:KULeuven/Common2/PageFooter}}
{{Team:KULeuven/Common2/PageFooter}}

Revision as of 19:50, 14 October 2009


Blue Light Receptor

The receptor senses the blue light to which the bacteria are exposed. By choosing the light intensity, the wanted vanillin concentration is set. Upon photo-excitation the receptorprotein YcgF dimerizes and interacts directly with the repressor YcgE. This protein is bound to the promoter-region of the key-gene and inhibits its transcription. The dimerized YcgF acts as an anti-repressor and releases YcgE from the DNA. Thereupon, the transcribed key activates vanillin production, which is proportional to the entered intensity of the blue light.

Vanillin Receptor

The vanillin receptor senses the vanillin concentration outside the cell. This information is needed to create the feedback loop that controls vanillin synthesis. The receptor consists of two proteins: virA and virG. In the presence of vanillin, virA binds a phosphor and transfers it to virG. In turn, the phosphorylated VirG binds to a so-called vir box sequence, triggering transcription of antikey. The more antikey is produced, the more it can anneal to the key and the less vanillin is produced. This process goes on until there’s an equilibrium between measured and wanted concentration.

Key Lock Antikey

The key/antikey system compares the signal from the blue light and vanillin receptor in order to control vanillin production. The more the measured amount of vanillin exceeds the wanted amount (set by the blue light intensity), the less vanillin is produced. After blue light irradiation, the key is transcribed and ‘unlocks’ the vanillin synthesis pathway. In response to the produced vanillin, the vanillin receptor then activates transcription of the antikey. Key and antikey are complementary RNA-strands: their annealing is favoured over the reaction between key en lock leading to vanillin synthesis.

Vanillin Production

A vanilla odour is created by synthesizing the molecule Vanillin. The starting point is tyrosine, an amino acid produced endogenously in E.coli. The subsequent pathway involves a combination of five enzymes. By locking both the transcription of the first and the third enzyme we prevent vanillin synthesis without the presence of the key.

Essencia coli’ is a vanillin producing bacterium equipped with a control system that keeps the concentration of vanillin at a constant level. The showpiece of the project is the feedback mechanism. Vanillin synthesis is initiated by irradiation with blue light. The preferred concentration can be modulated using the intensity of that light. At the same time the bacterium measures the amount of vanillin outside the cell and controls its production to maintain the set point. The designed system is universal in nature and has therefore potential benefits in different areas. The concept can easily be applied to other flavours and odours. In fact, any application that requires a constant concentration of a molecular substance is possible.

Miss Blue Vanilla: CEO of the Fragrance Factory

Missblue.png
Please allow me to introduce myself

I’m a bacterium of smell and taste

I’ve been around for a long four months

Founded a factory, no time to waste


I stuck around E. Coli

When I saw it was a time for a change

Rebuilt it with synthetic biology

To produce vanilla, isn’t that strange?


I watched with glee

While the blue light and its receptor

Triggered the synthesis pathway

By means of a key


I encode a sensor

Detect vanilla quantity

When concentration gets too high

I control it

By means of an antikey


Pleased to meet you

Hope you guess my name

My team is from K.U.Leuven

My mission is iGEM


Just as every part of the factory sketch

Points you to my underlying science

As vanillin is my essence

Just call me Essencia coli

‘Cause I’m a CEO in need of some fragrance