Team:Alberta/DNAanchor
From 2009.igem.org
(New page: {{:Team:Alberta/TemplateSc}} <html> <head> <style type="text/css"> .b1f, .b2f, .b3f, .b4f{font-size:1px; overflow:hidden; display:block;} .b1f {height:1px; background:#ADED7C; margin:0 5px...) |
|||
Line 4: | Line 4: | ||
<style type="text/css"> | <style type="text/css"> | ||
.b1f, .b2f, .b3f, .b4f{font-size:1px; overflow:hidden; display:block;} | .b1f, .b2f, .b3f, .b4f{font-size:1px; overflow:hidden; display:block;} | ||
- | .b1f {height:1px; background:# | + | .b1f {height:1px; background:#e1e1e1; margin:0 5px;} |
- | .b2f {height:1px; background:# | + | .b2f {height:1px; background:#e1e1e1; margin:0 3px;} |
- | .b3f {height:1px; background:# | + | .b3f {height:1px; background:#e1e1e1; margin:0 2px;} |
- | .b4f {height:2px; background:# | + | .b4f {height:2px; background:#e1e1e1; margin:0 1px;} |
- | .content {background: # | + | .content {background: #e1e1e1;} |
.content div {margin-left: 5px;} | .content div {margin-left: 5px;} | ||
</style> | </style> | ||
Line 24: | Line 24: | ||
<td style="height: 400; padding-left: 10px; padding-right: 10px; padding-top: 11px;"> | <td style="height: 400; padding-left: 10px; padding-right: 10px; padding-top: 11px;"> | ||
<b class="b1f"></b><b class="b2f"></b><b class="b3f"></b><b class="b4f"></b> | <b class="b1f"></b><b class="b2f"></b><b class="b3f"></b><b class="b4f"></b> | ||
- | <div class=" | + | <div class="Outreach"> |
<div style="height: 400; background:#FFFFFF; colorou line-height:100% padding: 3px 0px;"> | <div style="height: 400; background:#FFFFFF; colorou line-height:100% padding: 3px 0px;"> | ||
- | <h1> | + | <h1>DNA Anchor/Terminator</h1> |
- | < | + | |
- | < | + | <h3>Brick Creation</h3> |
- | < | + | <p>The use uracil-containing primers and USER(TM) enzyme mix provides an alternative (and more effective) method for creating 12 base sticky ends. The primers anneal to the A and B regions respectively, as well as ~5bp 3' into the cassette (to increase melting temperature). Bricks cloned into pAB and pBA can be PCR'd up with these universal uracil primers prA1u/prB1u, prA2u/prB2u) and treated with USER(TM) mix. The uracil DNA glycosylase (UDG) present will cleave the uracil base and endonuclease VIII will subsequently cleave the sugar-phosphate backbone at the apyrimidinic, creating single stranded regions which can be purified away using PCR purification spin columns. See <B>Figure 4</B>. </P> |
- | + | ||
- | -- | + | |
- | </ | + | |
- | </ | + | <br> |
+ | <center> | ||
+ | <img src="https://static.igem.org/mediawiki/2009/e/e0/UofA09_Bead_Overview_anchor2.png"> | ||
+ | <p><B>Figure 4</B>: pAB and pBA multiple cloning sites with highlighted primers prA1/B1u and prA2/B2u annealing regions<p> | ||
+ | </center> | ||
+ | <br> | ||
+ | <h3>Anchoring System</h3> | ||
+ | |||
+ | <p>The new and improved method for brick production (ie: USER<sup>TM</sup>) necessitated a change in anchoring system. Longer sticky ends were also desired to increase the efficiency of recircularization. These factors led to the development of a USER<sup>TM</sup>-based anchoring system. An anchoring piece, constructed of two annealed oligomers, is bound to the streptavidin-coated bead via a 5' biotin modification and provides a sticky 3' overhang complementary to an A end. When the desired number of bricks is added, a terminator (again, two annealed oligomers) is annealed and ligated to the available end of the final brick (in this case, a B end). The entire construct is then treated with USER<sup>TM</sup> enzyme mix. The resulting end, product from the digestion of uracil contained within the anchor, anneals to the terminator overhang and can be ligated to form a circular product. The ligation also yields a complete SceI site that can be used to linearize the construct for recombination into the <i>E. coli</i> genome. See <B>Figure 5</B>.</P> | ||
+ | |||
+ | <br> | ||
+ | <center> | ||
+ | <img src="https://static.igem.org/mediawiki/2009/c/c0/UofA09_Bead_Overview_prA12B12u.png"> | ||
+ | <p><B>Figure 5:</B> Showing anchor and terminator fragments and effect of USER<sup>TM</sup> treatment. I SceI site and A ends are highlighted<p> | ||
+ | </center> | ||
+ | <br> | ||
+ | |||
+ | |||
</div></div> | </div></div> | ||
<b class="b4f"></b><b class="b3f"></b><b class="b2f"></b><b class="b1f"></b> | <b class="b4f"></b><b class="b3f"></b><b class="b2f"></b><b class="b1f"></b> |
Revision as of 21:42, 17 October 2009
|
DNA Anchor/TerminatorBrick CreationThe use uracil-containing primers and USER(TM) enzyme mix provides an alternative (and more effective) method for creating 12 base sticky ends. The primers anneal to the A and B regions respectively, as well as ~5bp 3' into the cassette (to increase melting temperature). Bricks cloned into pAB and pBA can be PCR'd up with these universal uracil primers prA1u/prB1u, prA2u/prB2u) and treated with USER(TM) mix. The uracil DNA glycosylase (UDG) present will cleave the uracil base and endonuclease VIII will subsequently cleave the sugar-phosphate backbone at the apyrimidinic, creating single stranded regions which can be purified away using PCR purification spin columns. See Figure 4. Figure 4: pAB and pBA multiple cloning sites with highlighted primers prA1/B1u and prA2/B2u annealing regions
Anchoring SystemThe new and improved method for brick production (ie: USERTM) necessitated a change in anchoring system. Longer sticky ends were also desired to increase the efficiency of recircularization. These factors led to the development of a USERTM-based anchoring system. An anchoring piece, constructed of two annealed oligomers, is bound to the streptavidin-coated bead via a 5' biotin modification and provides a sticky 3' overhang complementary to an A end. When the desired number of bricks is added, a terminator (again, two annealed oligomers) is annealed and ligated to the available end of the final brick (in this case, a B end). The entire construct is then treated with USERTM enzyme mix. The resulting end, product from the digestion of uracil contained within the anchor, anneals to the terminator overhang and can be ligated to form a circular product. The ligation also yields a complete SceI site that can be used to linearize the construct for recombination into the E. coli genome. See Figure 5. Figure 5: Showing anchor and terminator fragments and effect of USERTM treatment. I SceI site and A ends are highlighted
|