Team:Cambridge/Parts
From 2009.igem.org
(Difference between revisions)
(→Parts Submitted to Registry) |
(→Parts Submitted to Registry) |
||
Line 13: | Line 13: | ||
| <partinfo>BBa_K274001</partinfo> | | <partinfo>BBa_K274001</partinfo> | ||
| Reporter | | Reporter | ||
- | | ''' | + | | '''MelA'''. The gene (melA) codes for a tyrosinase which produces a dark brown pigment from L-tyrosine. Production of the pigment requires the addition of copper and L-tyrosine supplements (the copper acts as a cofactor for the gene product) but no other precursors. The BioBrick sequence includes the native ribosome binding site. |
| 1844 bp | | 1844 bp | ||
|- style="color:#333; background-color:#A3C3FF;" cellpadding="6" cellspacing="0" border="1" | |- style="color:#333; background-color:#A3C3FF;" cellpadding="6" cellspacing="0" border="1" | ||
Line 25: | Line 25: | ||
|<partinfo>BBa_K274003</partinfo> | |<partinfo>BBa_K274003</partinfo> | ||
|Reporter | |Reporter | ||
- | |'''Vio operon ABDE'''. Produces a green pigment from L-tyrosine. Formed from the vio operon biobrick (BBa_K274002) with the vioC gene removed by restriction digest with BamHI and BglII. This sequence contains four genes, vioA, vioB vioD and vioE, each preceded by their own ribosome binding site. | + | |'''Vio operon ABDE'''. Produces a dark green pigment from L-tyrosine. Formed from the vio operon biobrick (BBa_K274002) with the vioC gene removed by restriction digest with BamHI and BglII. This sequence contains four genes, vioA, vioB vioD and vioE, each preceded by their own ribosome binding site. |
| 6032bp | | 6032bp | ||
+ | |- style="color:#333; background-color:#A3C3FF;" cellpadding="6" cellspacing="0" border="1" | ||
+ | |||
+ | |<partinfo>BBa_K274004</partinfo> | ||
+ | |Reporter | ||
+ | |'''Vio operon ABCE'''. Produces a light green pigment from L-tyrosine. Formed from the vio operon biobrick (BBa_K274002) with the vioD gene removed by restriction digest with BglII and BclI. This sequence contains four genes, vioA, vioB vioC and vioE, each preceded by their own ribosome binding site. | ||
+ | | bp | ||
|- style="color:#333; background-color:#A3C3FF;" cellpadding="6" cellspacing="0" border="1" | |- style="color:#333; background-color:#A3C3FF;" cellpadding="6" cellspacing="0" border="1" | ||
Line 32: | Line 38: | ||
| Composite | | Composite | ||
| '''CrtEBI with rbs'''. This Composite Biobrick is created by standard assembly of 3 basic Biobricks coding for enzymes CrtE, CrtB and CrtI (each with rbs). Together, enzymes CrtE, CrtB and CrtI convert colourless farnesyl pyrophosphate to '''red lycopene''' (via intermediates geranylgeranyl pyroiphosphate and phytoene). The red lycopene pigment can then be used as a coloured signal output, e.g. for biosensors. | | '''CrtEBI with rbs'''. This Composite Biobrick is created by standard assembly of 3 basic Biobricks coding for enzymes CrtE, CrtB and CrtI (each with rbs). Together, enzymes CrtE, CrtB and CrtI convert colourless farnesyl pyrophosphate to '''red lycopene''' (via intermediates geranylgeranyl pyroiphosphate and phytoene). The red lycopene pigment can then be used as a coloured signal output, e.g. for biosensors. | ||
- | | | + | | 3385bp |
|- style="color:#333; background-color:#A3C3FF;" cellpadding="6" cellspacing="0" border="1"| | |- style="color:#333; background-color:#A3C3FF;" cellpadding="6" cellspacing="0" border="1"| | ||
Line 38: | Line 44: | ||
| Generator | | Generator | ||
| '''CrtEBI under constitutive promoter'''. This Biobrick is created by putting enzyme cassette CrtEBI (with individual rbs) of Part BBa_K274100 under constitutive promoter R0011. Amount of lycopene produced can be measured by photospectrometer with absorbance at 475nm (lycopene extraction using acetone). | | '''CrtEBI under constitutive promoter'''. This Biobrick is created by putting enzyme cassette CrtEBI (with individual rbs) of Part BBa_K274100 under constitutive promoter R0011. Amount of lycopene produced can be measured by photospectrometer with absorbance at 475nm (lycopene extraction using acetone). | ||
- | | | + | | 3448bp |
|- style="color:#333; background-color:#A3C3FF;" cellpadding="6" cellspacing="0" border="1"| | |- style="color:#333; background-color:#A3C3FF;" cellpadding="6" cellspacing="0" border="1"| | ||
Line 44: | Line 50: | ||
| Generator | | Generator | ||
| '''CrtEBI under pBad promoter'''. This Biobrick is created by putting enzyme cassette CrtEBI (with individual rbs) of Part BBa_K274100 under arabinose-induced promoter I0500. Amount of lycopene produced can be measured by photospectrometer with absorbance at 475nm (lycopene extraction using acetone). | | '''CrtEBI under pBad promoter'''. This Biobrick is created by putting enzyme cassette CrtEBI (with individual rbs) of Part BBa_K274100 under arabinose-induced promoter I0500. Amount of lycopene produced can be measured by photospectrometer with absorbance at 475nm (lycopene extraction using acetone). | ||
- | | | + | | 4603bp |
|- style="color:#333; background-color:#A3C3FF;" cellpadding="6" cellspacing="0" border="1" | |- style="color:#333; background-color:#A3C3FF;" cellpadding="6" cellspacing="0" border="1" | ||
Line 50: | Line 56: | ||
| Composite | | Composite | ||
| '''CrtEBIY with rbs'''. This Composite Biobrick is created by standard assembly of 4 basic Biobricks coding for enzymes CrtE, CrtB, CrtI and CrtY (each with rbs). Together, enzymes CrtE, CrtB, CrtI and CrtY convert colourless farnesyl pyrophosphate to '''orange beta-carotene''' (via intermediates geranylgeranyl pyroiphosphate, phytoene and lycopene). The orange beta-carotene pigment can then be used as a coloured signal output, e.g. for biosensors. | | '''CrtEBIY with rbs'''. This Composite Biobrick is created by standard assembly of 4 basic Biobricks coding for enzymes CrtE, CrtB, CrtI and CrtY (each with rbs). Together, enzymes CrtE, CrtB, CrtI and CrtY convert colourless farnesyl pyrophosphate to '''orange beta-carotene''' (via intermediates geranylgeranyl pyroiphosphate, phytoene and lycopene). The orange beta-carotene pigment can then be used as a coloured signal output, e.g. for biosensors. | ||
- | | | + | | 4555bp |
|- style="color:#333; background-color:#A3C3FF;" cellpadding="6" cellspacing="0" border="1"| | |- style="color:#333; background-color:#A3C3FF;" cellpadding="6" cellspacing="0" border="1"| | ||
Line 56: | Line 62: | ||
| Generator | | Generator | ||
| '''CrtEBIY under constitutive promoter'''. This Biobrick is created by putting enzyme cassette CrtEBIY (with individual rbs) of Part BBa_K274200 under constitutive promoter R0011. Amount of beta-carotene produced can be measured by photospectrometer with absorbance at 455nm (beta-carotene extraction using acetone). | | '''CrtEBIY under constitutive promoter'''. This Biobrick is created by putting enzyme cassette CrtEBIY (with individual rbs) of Part BBa_K274200 under constitutive promoter R0011. Amount of beta-carotene produced can be measured by photospectrometer with absorbance at 455nm (beta-carotene extraction using acetone). | ||
- | | | + | | 4618bp |
|- style="color:#333; background-color:#A3C3FF;" cellpadding="6" cellspacing="0" border="1"| | |- style="color:#333; background-color:#A3C3FF;" cellpadding="6" cellspacing="0" border="1"| | ||
Line 62: | Line 68: | ||
| Generator | | Generator | ||
| '''CrtEBIY under pBad promoter'''. This Biobrick is created by putting enzyme cassette CrtEBIY (with individual rbs) of Part BBa_K274200 under arabinose-induced promoter I0500. Amount of beta-carotene produced can be measured by photospectrometer with absorbance at 455nm (beta-carotene extraction using acetone). | | '''CrtEBIY under pBad promoter'''. This Biobrick is created by putting enzyme cassette CrtEBIY (with individual rbs) of Part BBa_K274200 under arabinose-induced promoter I0500. Amount of beta-carotene produced can be measured by photospectrometer with absorbance at 455nm (beta-carotene extraction using acetone). | ||
- | | | + | | 5773bp |
|- style="color:#333; background-color:#A3C3FF;" cellpadding="6" cellspacing="0" border="1"| | |- style="color:#333; background-color:#A3C3FF;" cellpadding="6" cellspacing="0" border="1"| | ||
Revision as of 16:30, 19 October 2009
Categories :
-
Home
Team
Sponsors
Parts Submitted to Registry
Image Gallery
Leave a Message!
Project :
-
Overview
Sensitivity Tuner
--- Characterisation
--- Modelling
Colour Generators
--- Carotenoids (Orange/Red)
--- Melanin (Brown)
--- Violacein (Purple/Green)
The Future
Safety
Notebook :
Team Logistics :
Parts Submitted to Registry
Registry Code | Type | Sequence Description / Notes | Length |
---|---|---|---|
Reporter | MelA. The gene (melA) codes for a tyrosinase which produces a dark brown pigment from L-tyrosine. Production of the pigment requires the addition of copper and L-tyrosine supplements (the copper acts as a cofactor for the gene product) but no other precursors. The BioBrick sequence includes the native ribosome binding site. | 1844 bp | |
Reporter | Violacein. Produces a purple pigment (violacein) from L-tyrosine. The operon contains five genes (VioA-E) each with their own ribosome binding sites. | 7346bp | |
Reporter | Vio operon ABDE. Produces a dark green pigment from L-tyrosine. Formed from the vio operon biobrick (BBa_K274002) with the vioC gene removed by restriction digest with BamHI and BglII. This sequence contains four genes, vioA, vioB vioD and vioE, each preceded by their own ribosome binding site. | 6032bp | |
Reporter | Vio operon ABCE. Produces a light green pigment from L-tyrosine. Formed from the vio operon biobrick (BBa_K274002) with the vioD gene removed by restriction digest with BglII and BclI. This sequence contains four genes, vioA, vioB vioC and vioE, each preceded by their own ribosome binding site. | bp | |
Composite | CrtEBI with rbs. This Composite Biobrick is created by standard assembly of 3 basic Biobricks coding for enzymes CrtE, CrtB and CrtI (each with rbs). Together, enzymes CrtE, CrtB and CrtI convert colourless farnesyl pyrophosphate to red lycopene (via intermediates geranylgeranyl pyroiphosphate and phytoene). The red lycopene pigment can then be used as a coloured signal output, e.g. for biosensors. | 3385bp | |
Generator | CrtEBI under constitutive promoter. This Biobrick is created by putting enzyme cassette CrtEBI (with individual rbs) of Part BBa_K274100 under constitutive promoter R0011. Amount of lycopene produced can be measured by photospectrometer with absorbance at 475nm (lycopene extraction using acetone). | 3448bp | |
Generator | CrtEBI under pBad promoter. This Biobrick is created by putting enzyme cassette CrtEBI (with individual rbs) of Part BBa_K274100 under arabinose-induced promoter I0500. Amount of lycopene produced can be measured by photospectrometer with absorbance at 475nm (lycopene extraction using acetone). | 4603bp | |
Composite | CrtEBIY with rbs. This Composite Biobrick is created by standard assembly of 4 basic Biobricks coding for enzymes CrtE, CrtB, CrtI and CrtY (each with rbs). Together, enzymes CrtE, CrtB, CrtI and CrtY convert colourless farnesyl pyrophosphate to orange beta-carotene (via intermediates geranylgeranyl pyroiphosphate, phytoene and lycopene). The orange beta-carotene pigment can then be used as a coloured signal output, e.g. for biosensors. | 4555bp | |
Generator | CrtEBIY under constitutive promoter. This Biobrick is created by putting enzyme cassette CrtEBIY (with individual rbs) of Part BBa_K274200 under constitutive promoter R0011. Amount of beta-carotene produced can be measured by photospectrometer with absorbance at 455nm (beta-carotene extraction using acetone). | 4618bp | |
Generator | CrtEBIY under pBad promoter. This Biobrick is created by putting enzyme cassette CrtEBIY (with individual rbs) of Part BBa_K274200 under arabinose-induced promoter I0500. Amount of beta-carotene produced can be measured by photospectrometer with absorbance at 455nm (beta-carotene extraction using acetone). | 5773bp |