Team:LCG-UNAM-Mexico/Description
From 2009.igem.org
(Difference between revisions)
(→The Defense System) |
|||
Line 6: | Line 6: | ||
='''Description'''= | ='''Description'''= | ||
- | |||
- | |||
- | |||
Line 28: | Line 25: | ||
The first level of the expression cascade consists on the delivery (Phage Delivey) of the protection system that will be immediately activated when a phage is detected (Defense system: Phage sabotage). At the time that formation of infectious viral particles is hold back, a diffusing signal alarms neighboring cells of the presence of infection. (Gossip). The reaction of alarmed cells consists on turning on a device, which allows a delay in case of turning on the defense system (Paranoia).<br> | The first level of the expression cascade consists on the delivery (Phage Delivey) of the protection system that will be immediately activated when a phage is detected (Defense system: Phage sabotage). At the time that formation of infectious viral particles is hold back, a diffusing signal alarms neighboring cells of the presence of infection. (Gossip). The reaction of alarmed cells consists on turning on a device, which allows a delay in case of turning on the defense system (Paranoia).<br> | ||
- | + | =='''Design'''== | |
Line 95: | Line 92: | ||
We designed a kamikaze system that will prevent the spreading of phage infection. We fused T7’s promoter with the rRNAse domain of colicin E3 and GFP gene as a reporter. Colicin E3 is a toxin that cleaves 16s rRNAs in active ribosomes of E. Coli. Naive T7 will infect protected E. Coli which will start producing toxins that deactivate ribosomes. The result: No translation Machinery, no phages production and a heroic bacterium’s death. We expect the burst size to be significantly reduced when our system is working.<br><br> | We designed a kamikaze system that will prevent the spreading of phage infection. We fused T7’s promoter with the rRNAse domain of colicin E3 and GFP gene as a reporter. Colicin E3 is a toxin that cleaves 16s rRNAs in active ribosomes of E. Coli. Naive T7 will infect protected E. Coli which will start producing toxins that deactivate ribosomes. The result: No translation Machinery, no phages production and a heroic bacterium’s death. We expect the burst size to be significantly reduced when our system is working.<br><br> | ||
- | Our multipromoter construction for the | + | Our multipromoter construction for the Defence System also integrates LuxI in order to create an Alarm Response. Once a bacterium gets infected T7 promoter will activate the transcription of E3, GFP and LuxI so AHL will be produced and diffused to the extracellular environment.<br><br> |
In order to simulate the spatial dynamics of the Defence System we designed and implemented a Cellular Automata (CA). Using the CA we can approach several problems at the same time: E. Coli movement and duplication, AHL and phage diffusion and the infection process. Parameters for the bacteria in the CA are random variables so we sample the distributions created by the Stochastic Kinetic Simulations:<br><br> | In order to simulate the spatial dynamics of the Defence System we designed and implemented a Cellular Automata (CA). Using the CA we can approach several problems at the same time: E. Coli movement and duplication, AHL and phage diffusion and the infection process. Parameters for the bacteria in the CA are random variables so we sample the distributions created by the Stochastic Kinetic Simulations:<br><br> | ||
- | Finally we create the multi-scale model sampling the distributions created by the Stochastic Kinetic Simulations and use those values as parameters for the cells in the CA.<br> | + | Finally we create the multi-scale model sampling the distributions created by the Stochastic Kinetic Simulations and use those values as parameters for the cells in the CA.<br> |
+ | |||
==='''System Specifications'''=== | ==='''System Specifications'''=== |
Revision as of 02:59, 20 October 2009