Team:USTC Software/WhatOverview

From 2009.igem.org

(Difference between revisions)
Line 1: Line 1:
-
One goal of synthetic biology is to understand the exciting biological phenomenon by reconstructing the systems that have the similar behavior to native.  
+
'''One goal of synthetic biology is to understand the exciting biological phenomenon by reconstructing the systems that have the similar behavior to native.The design process is always very difficult for the biologists as the only information is the desired phenotype.'''
='''GOAL'''=
='''GOAL'''=
The ultimate goal of synthetic biology is to program complex biological networks that could achieve desired phenotype and produce significant metabolites in purpose of real world application, by fabricating standard components from an engineering-driven perspective. This project explores the application of theoretical approaches to automatically design synthetic complex biological networks with desired functions defined as dynamical behavior and input-output property. We propose a novel design scheme highlighted in the notion of trade-off that synthetic networks could be obtained by a compromise between performance and robustness. Moreover, series of eligible strategies, which consist of various topologies and possible standard components such as BioBricks, provide multiple choices to facilitate the wet experiment procedure. Description of all feasible solutions takes advantage of SBML and SBGN standard to guarantee extensibility and compatibility.
The ultimate goal of synthetic biology is to program complex biological networks that could achieve desired phenotype and produce significant metabolites in purpose of real world application, by fabricating standard components from an engineering-driven perspective. This project explores the application of theoretical approaches to automatically design synthetic complex biological networks with desired functions defined as dynamical behavior and input-output property. We propose a novel design scheme highlighted in the notion of trade-off that synthetic networks could be obtained by a compromise between performance and robustness. Moreover, series of eligible strategies, which consist of various topologies and possible standard components such as BioBricks, provide multiple choices to facilitate the wet experiment procedure. Description of all feasible solutions takes advantage of SBML and SBGN standard to guarantee extensibility and compatibility.

Revision as of 13:14, 20 October 2009

One goal of synthetic biology is to understand the exciting biological phenomenon by reconstructing the systems that have the similar behavior to native.The design process is always very difficult for the biologists as the only information is the desired phenotype.

GOAL

The ultimate goal of synthetic biology is to program complex biological networks that could achieve desired phenotype and produce significant metabolites in purpose of real world application, by fabricating standard components from an engineering-driven perspective. This project explores the application of theoretical approaches to automatically design synthetic complex biological networks with desired functions defined as dynamical behavior and input-output property. We propose a novel design scheme highlighted in the notion of trade-off that synthetic networks could be obtained by a compromise between performance and robustness. Moreover, series of eligible strategies, which consist of various topologies and possible standard components such as BioBricks, provide multiple choices to facilitate the wet experiment procedure. Description of all feasible solutions takes advantage of SBML and SBGN standard to guarantee extensibility and compatibility.