Team:DTU Denmark/USERprograminstructions
From 2009.igem.org
Line 220: | Line 220: | ||
<td width="182px" height="100%" valign="top" bgcolor=DDDDDD class="greybox"> | <td width="182px" height="100%" valign="top" bgcolor=DDDDDD class="greybox"> | ||
<font face="arial" size="2"> | <font face="arial" size="2"> | ||
- | |||
Line 227: | Line 226: | ||
<p align="left"><i>“Synthetic Biology is an art of engineering new biological systems that don’t exist in nature.”</i><br></p> | <p align="left"><i>“Synthetic Biology is an art of engineering new biological systems that don’t exist in nature.”</i><br></p> | ||
+ | <p> | ||
+ | <strong>Achievements</strong><br> | ||
+ | <br> | ||
+ | <strong>Redox sensing device</strong><br> | ||
+ | Two novel genes have been designed and synthesized each comprised of 5 genetic elements. Together they function as a device termed the Redoxilator that can sense the internal redox state of a yeast cell, and output a reporter signal. Extensive mathematical modelling was performed to simulate how the construct would operate <i>in vivo</i>.<br> | ||
+ | <br> | ||
+ | <strong>Biobricks</strong><br> | ||
+ | DNA of several new biobricks have been designed and submitted including a yeast optimized GFP reporter protein, a protein degradation sequence and a fast degradable yeast GFP. (Bronze medal)<br> | ||
+ | <br> | ||
+ | We have demonstrated that our USER fusion biobrick works as expected and documented it (silver medal)<br> | ||
+ | <br> | ||
+ | <strong>USER fusion Assembly standard</strong><br> | ||
+ | A new biobrick assembly standard that allows the rapid construction of multi-part devices have been developed and documented. The assembly standard offers many benefits: All restriction sites are allowed, multiple biobricks can be joined in one step, the result is scar-free making it ideal for protein fusions and more. (Gold medal)<br> | ||
+ | <br> | ||
+ | <strong>USER-fusion primer design software</strong><br> | ||
+ | A novel and very useful software tool have been developed that can automatically design the optimal primers for USER fusion assembly of 2-9 biobricks, taking several parameters into account. | ||
+ | </p> | ||
- | |||
- | |||
- | |||
</font> | </font> |
Revision as of 22:30, 20 October 2009
Home | The Team | The Project | Parts submitted | Modelling | Notebook |
The redoxilator - Genetic design - Applications and perspectives - Results - Safety considerations The USER assembly standard - USER fusion of biobricks USER fusion primer design software - Abstract - Instructions - Output format |
The project The USER fusion primer design software: PHUSER (Primer Help for USER) PHUSER user manual We have put a lot of thought and consideration into which user-definable parameters to include. In the end, we decided that a user-friendly input was the best solution for the beta version of PHUSER. Further down the line, the program can be customized for high-end users, and advanced options made available upon request. For now we keep it simple, and ask only for three main inputs: 1. Name of biobrick (essentially you can call it whatever you wish), and; 2. Sequence of biobrick (pasted as single-stranded DNA from 5' to 3'). NOTE: Only A's, T's, G's, and C's are accepted as input, i.e. no FASTA-headers or spaces (line shifts are ok). 3. Your choice of USER cassette. For now only one is available, but more will follow shortly. As a default in the interface, only two biobrick-submission boxes are available to begin with. If you wish to fuse more than two biobricks in the same reaction, simply click "add another biobrick" and another submission box will appear. The maximum capacity is nine biobricks (may be subject to change). Design your primers with PHUSER here |
“Synthetic Biology is an art of engineering new biological systems that don’t exist in nature.”
Achievements |
Comments or questions to the team? Please Email us -- Comments of questions to webmaster? Please Email us |