Team:LCG-UNAM-Mexico
From 2009.igem.org
(Difference between revisions)
(→The Project) |
|||
Line 15: | Line 15: | ||
Besides, the defense system will consist of DNA and RNA degradation by toxins which will be transcribed by T3 or T7 RNA-Polymerases fast enough to stop phage assembly and scattering in the environment. Simultaneously, a quorum sensing signal will be diffusing to the non-infected bacteria acting as a transcriptional activator of an antisense RNA against bacteriophage's transcriptional machinery , hence "warning" the population to prepare against further T3 or T7 infection.<br> | Besides, the defense system will consist of DNA and RNA degradation by toxins which will be transcribed by T3 or T7 RNA-Polymerases fast enough to stop phage assembly and scattering in the environment. Simultaneously, a quorum sensing signal will be diffusing to the non-infected bacteria acting as a transcriptional activator of an antisense RNA against bacteriophage's transcriptional machinery , hence "warning" the population to prepare against further T3 or T7 infection.<br> | ||
<br> | <br> | ||
- | Furthermore, we will implement a stochastic [[Team:LCG-UNAM-Mexico: | multi-scale model]]. The model will simulate the behaviour at the intracellular scale using [[Team:LCG-UNAM-Mexico:Molecular model | stochastic molecular simulations]] and at the populations scale using a [[Team:LCG-UNAM-Mexico:CA | Cellular Automata]] and a [[Team:LCG-UNAM-Mexico:odes | system of ODE's]]. <br> | + | Furthermore, we will implement a stochastic [[Team:LCG-UNAM-Mexico: | multi-scale model]]. The model will simulate the behaviour at the intracellular scale using [[Team:LCG-UNAM-Mexico:Molecular model | stochastic molecular simulations]] and at the populations scale using a [[Team:LCG-UNAM-Mexico:CA | Cellular Automata]] and a [[Team:LCG-UNAM-Mexico:odes | system of ODE's]]. <br> Simulations results are in good agreement with existing experimental data. Thanks to the structure and design of the model this can be easily modified in order to simulate infection dynamics for different bacteria and phages. Furthermore, our Molecular model can be used as a reliable tool for sampling biomolecules distributions involved in phage infection processes. <br> |
- | |} | + | |}---- |
<html> | <html> |
Revision as of 01:59, 21 October 2009