Team:LCG-UNAM-Mexico
From 2009.igem.org
(Difference between revisions)
(→The Project) |
|||
Line 12: | Line 12: | ||
We propose a population level approach relaying on a defense system delivered by an engineered version of the enterobacteria phage P4. The purpose of the defense construction is to make a bacteria to hold back the process of infection by triggering a cellular death response when a cell encounters a specific component of the infective phage. Such response will be fast enough to stop the formation process of viral particles, thus preventing the phage proliferation and population decline.<br> | We propose a population level approach relaying on a defense system delivered by an engineered version of the enterobacteria phage P4. The purpose of the defense construction is to make a bacteria to hold back the process of infection by triggering a cellular death response when a cell encounters a specific component of the infective phage. Such response will be fast enough to stop the formation process of viral particles, thus preventing the phage proliferation and population decline.<br> | ||
- | The | + | The delivery system takes advantage of the satellite properties of P4 phage. This means that a P4 phage engineered with the defense construction will be able to infect an ''E.coli'' strain which harbors some genes from helper phage P2 that are used for complementing and completing P4 life cycle, hence creating a production line of our version of P4.<br> |
Besides, the defense system will consist of DNA and RNA degradation by toxins which will be transcribed by T3 or T7 RNA-Polymerases fast enough to stop phage assembly and scattering in the environment. Simultaneously, a quorum sensing signal will be diffusing to the non-infected bacteria acting as a transcriptional activator of an antisense RNA against bacteriophage's transcriptional machinery , hence "warning" the population to prepare against further T3 or T7 infection.<br> | Besides, the defense system will consist of DNA and RNA degradation by toxins which will be transcribed by T3 or T7 RNA-Polymerases fast enough to stop phage assembly and scattering in the environment. Simultaneously, a quorum sensing signal will be diffusing to the non-infected bacteria acting as a transcriptional activator of an antisense RNA against bacteriophage's transcriptional machinery , hence "warning" the population to prepare against further T3 or T7 infection.<br> | ||
<br> | <br> |
Revision as of 15:11, 21 October 2009