Team:KULeuven/Design/Blue Light Receptor

From 2009.igem.org

(Difference between revisions)
Line 5: Line 5:
[[Image:Biologie_blue_light.png|center]]
[[Image:Biologie_blue_light.png|center]]
-
 
+
{{kulpart|BBa_K238013|DeepComponents}}
 +
{{kulpart|BBa_K238013}}
The purpose of the receptor is to enter the wanted vanillin concentration. The protein YcgF is a known blue-light sensor in certain E. coli strains. Upon photo-excitation it dimerizes and acts as an anti-repressor for YcgE. YcgE is bound to the promotor-region and inhibits RNA Polymerase. The dimerized YcgF interacts directly with the repressor, releasing it from the DNA and allowing transcription. The light used to perform the test has a wavelength of 470nm.  
The purpose of the receptor is to enter the wanted vanillin concentration. The protein YcgF is a known blue-light sensor in certain E. coli strains. Upon photo-excitation it dimerizes and acts as an anti-repressor for YcgE. YcgE is bound to the promotor-region and inhibits RNA Polymerase. The dimerized YcgF interacts directly with the repressor, releasing it from the DNA and allowing transcription. The light used to perform the test has a wavelength of 470nm.  

Revision as of 09:51, 11 September 2009

Biologie blue light.png



The purpose of the receptor is to enter the wanted vanillin concentration. The protein YcgF is a known blue-light sensor in certain E. coli strains. Upon photo-excitation it dimerizes and acts as an anti-repressor for YcgE. YcgE is bound to the promotor-region and inhibits RNA Polymerase. The dimerized YcgF interacts directly with the repressor, releasing it from the DNA and allowing transcription. The light used to perform the test has a wavelength of 470nm.


We designed the part in such way that irradiation with a certain amount of blue light activates transcription of RIBOKEY-mRNA. To achieve this, we purified the promoter-region of the E. coli- strain MC4100. After mutating out possible restriction sites, the blr promoter part () was added to the registry.