Team:Imperial College London/M2/EncapsulationRationale

From 2009.igem.org

(Difference between revisions)
(Encapsulation Rationale)
(Encapsulation Rationale)
Line 8: Line 8:
In nature, encapsulation pathways such as spore formation, aliginate biosynthesis and colanic acid production all share one common feature: they require a large number of genes. For this reason, we decided that the best way encapsulate our chassis was via the modulation of an existing pathway.  
In nature, encapsulation pathways such as spore formation, aliginate biosynthesis and colanic acid production all share one common feature: they require a large number of genes. For this reason, we decided that the best way encapsulate our chassis was via the modulation of an existing pathway.  
-
<i>E.coli</i> naturally produces a harmless acid resistant polymer known as colanic acid. By tapping into the pathway that initiates colanic acid biosynthesis, we can turn on its production via the modulation of a gene called RcsB.
+
<i>E.coli</i> naturally produces a harmless acid resistant polymer known as colanic acid. Colanic acid is a polymer of glucose, galactose and glucuronic acid. By tapping into the pathway that initiates colanic acid biosynthesis, we can turn on its production via the modulation of a gene called RcsB.
In nature, colanic acid acts as a binding agent between individual cells over which a biofilm can be formed. While colanic acid itself is harmless, biofilm formation is associated with the production of a number of virulence factors. To prevent biofilm formation from occuring, we have tapped into a second pathway such that our cells become locked into colanic acid production. The gene responsible for preventing biofilm formation is a transcription factor called YgiV.
In nature, colanic acid acts as a binding agent between individual cells over which a biofilm can be formed. While colanic acid itself is harmless, biofilm formation is associated with the production of a number of virulence factors. To prevent biofilm formation from occuring, we have tapped into a second pathway such that our cells become locked into colanic acid production. The gene responsible for preventing biofilm formation is a transcription factor called YgiV.

Revision as of 09:35, 9 October 2009

II09 Thumb m2.pngModule 2 - Encapsulsation Overview

II09 TimelineM2.png

Encapsulation Rationale

In nature, encapsulation pathways such as spore formation, aliginate biosynthesis and colanic acid production all share one common feature: they require a large number of genes. For this reason, we decided that the best way encapsulate our chassis was via the modulation of an existing pathway.

E.coli naturally produces a harmless acid resistant polymer known as colanic acid. Colanic acid is a polymer of glucose, galactose and glucuronic acid. By tapping into the pathway that initiates colanic acid biosynthesis, we can turn on its production via the modulation of a gene called RcsB.

In nature, colanic acid acts as a binding agent between individual cells over which a biofilm can be formed. While colanic acid itself is harmless, biofilm formation is associated with the production of a number of virulence factors. To prevent biofilm formation from occuring, we have tapped into a second pathway such that our cells become locked into colanic acid production. The gene responsible for preventing biofilm formation is a transcription factor called YgiV.

In nature, colanic acid is associated with but not attached to the cell surface. To facilitate whole cell encapsulation, we have modified a third pathway to fix the colanic acid to the surface of the cell. This involves an enzyme called Rfal.




  About RcsB, YgiV and Rfal.



Mr. Gene   Geneart   Clontech   Giant Microbes