Team:LCG-UNAM-Mexico/Description
From 2009.igem.org
(Difference between revisions)
(→Defense approach) |
|||
Line 3: | Line 3: | ||
|-valign="top" border="0" | |-valign="top" border="0" | ||
|width="900px" style="padding: 0 20px 0 0;"| | |width="900px" style="padding: 0 20px 0 0;"| | ||
+ | |||
+ | |||
+ | ='''Description'''= | ||
+ | |||
+ | |||
+ | =='''The Project'''== | ||
+ | |||
+ | |||
+ | |||
+ | Bacteriophage infection represents an interesting process in science and industry. The idea of being able to contend at a population level with such infections is the main motivation for the development of our project.<br> | ||
+ | |||
+ | We propose a population level approach relaying on a defense system delivered by an engineered version of the enterobacteria phage P4. The purpose of the defense construction is to make a bacteria to hold back the process of infection by triggering a cellular death response when a cell encounters a specific component of the infective phage. Such response will be fast enough to stop the formation process of viral particles, thus preventing the phage proliferation and population decline.<br> | ||
+ | |||
+ | Delivery of the defense system take advantage of the satellite properties of P4 phage. This means that a P4 phage engineered with the defense construction will be able to infect an ''E.coli'' strain which harbors some genes from the helper phage P2 that are used for complementing and completing P4 life cycle, hence creating a production line of our version of P4.<br> | ||
+ | On the other hand the defense system will consist of DNA and RNA degradation by toxins which will be transcribed by T3 or T7 RNA-Polymerases fast enough to stop phage assembly and scattering in the environment. Simultaneously, a quorum sensing signal will be difunding to the non-infected bacterias acting as a transcriptional activator of an antisense RNA against bacteriophage's transcriptional machinery , hence "warning" the population to prepare against further T3 or T7 infection.<br> | ||
+ | |||
+ | Furthermore, we will implement a stochastic population model based on the basic properties of the bacterial cells and the phages such as movement, reproduction, etc. The model will make simulations of the infection processes and quantification of the efficiency of our system possible.<br> | ||
+ | |||
=='''Relevance of the project'''== | =='''Relevance of the project'''== |
Revision as of 13:48, 14 October 2009