Component | Description | Part/Accession # | Base Pairs | Plasmid | Resistance | Well |
RBS | Ribosomal Binding Site | [http://partsregistry.org/Part:BBa_B0034 BBa_B0034] | 12 | pSB1A2 | Ampicillin | plate 1, 2M |
Red Light Sensor | description | [http://partsregistry.org/Part:BBa_I15010 BBa_I15010] | 2,238 | pSB2K3 | Kanamycin | N/A |
OmpR (E. coli) | description | [http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=retrieve&dopt=full_report&list_uids=947913&log$=databasead&logdbfrom=protein NP_417864.1] | 720 | pSB1T3 | Tetracycline | N/A |
Terminator | description | [http://partsregistry.org/Part:BBa_B0015 BBa_B0015] | 129 | pSB1AK3 | Ampicillin and Kanamycin | plate 1, 23L |
OmpR + Terminator | description | sequence | 916 | pany-amp | Ampicillin | synthesized |
OmpC promoter | description | [http://partsregistry.org/Part:BBa_R0082 BBa_R0082] | 108 | pSB1A2 | Ampicillin | plate 1, 16K |
puc B/A | description | sequence | 375 | pSB1A3 | Ampicillin | N/A |
puc B | description | [http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=retrieve&dopt=full_report&list_uids=3719170&log$=databasead&logdbfrom=nuccore YP_353390] | 156 | ? | ? | N/A |
puc A | description | [http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=retrieve&dopt=full_report&list_uids=3719171&log$=databasead&logdbfrom=nuccore YP_353391] | 165 | ? | ? | N/A |
OmpC promoter+BA | description | sequence | 539 | pany-kana | Kanamycin | synthesized |
Light Response System | description | [http://partsregistry.org/Part:BBa_M30109 BBa_M30109] | 4,333 | ? | Ampicillin | N/A |
TetR repressible | description | [http://partsregistry.org/Part:BBa_J13002 BBa_J13002] | 74 | pSB1A2 | Ampicillin | plate 1, 13B |
Green Flourescent Protein | description | [http://partsregistry.org/Part:BBa_E0240 BBa_E0240] | 976 | pSB1A2 | Ampicillin | plate 1, 12M |
Our group seeks to assess the optimality of the synthetic system that modulates pucBA gene expression and LH2 complex assembly in Rhodobacter sphaeroides. Here we employ a mathematical model of this system to generate predictions about the behavior of the active system in response to light input. Features of the system that the model may help investigate include the time scale of response to light signals, the robustness of the system in response to fluctuations in light intensity, and the translation between changes in gene expression and the absorbance spectrum of the engineered cells.
1. Alon, Uri. Introduction to systems biology and the design principles of biological networks. Boca Raton, FL: Chapman & Hall, 2006.
2. Bower, James M. Computational Modeling of Genetic and Biochemical Networks (Computational Molecular Biology). New York: M.I.T. PRESS, 2001.
3. System modeling in cellular biology from concepts to nuts and bolts. Cambridge, MA: MIT P, 2006.