Team:Stanford/Notebook/Homeostasis

From 2009.igem.org

Revision as of 02:06, 5 September 2009 by Chrisvanlang (Talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

 

Home Team Project Parts Notebook Archives

Team Notebook Individual Notebooks Weekly Descriptions


<LNCalendar></LNCalendar>

150px <sitesearch>title=Search this project</sitesearch>

Customize your entry pages

Project Description

The 2009 Stanford iGEM project centers on creating a device that will detect and respond to imbalances in specific subpopulations of T cells, a type of immune cell. The two populations of T cells that we are particularly interested in are Th17 cells, a branch of helper T cells that promote inflammatory responses, and regulatory T cells (Tregs), crucial for the generation and maintenance of localized immunosuppression. Distinct populations of Th17 cells and Tregs cells coexist and are reciprocally regulated in healthy tissue, and imbalances in the ratio of these lymphocytes have been implicated in a wide rage of autoimmune disorders including rheumatoid arthritis and irritable bowel diseases (IBD).

Our goal is to sense and correct such imbalances in individuals suffering from IBD by creating an Escherichia coli-based bacterial device that polarizes the differentiation of lymphocyte precursors along either the Th17 or Treg lineage. Our device will consist of two parts. The first part, our anti-inflammatory device, will control dangerous localized inflammation in the gut by detecting a byproduct linked to Th17-driven inflammation, nitric oxide, and excreting retinoic acid, a marker that inhibits the generation of Th17 cells. Likewise, the second, anti-immunosuppressive device, regulates Treg populations by detecting an analog of tryptophan, a target substrate of an enzyme involved in Treg immunosuppression, and secretes interleukin-6, a cytokine that inhibits Treg development.

We envision our proposed machine as a novel and directed probiotic therapy that will act at the interface between commensal bacteria and human lymphocytes while integrating cutting-edge immunology with synthetic biology.

Notes and Comments

  • [Please leave comments here!!!]



Template:LnNotebookRecentChanges2