Team:KULeuven/Modeling/Vanillin Receptor

From 2009.igem.org

Revision as of 07:36, 14 September 2009 by K3n (Talk | contribs)

Contents

Vanillin Sensor

Biological Model

Biologie vanillin receptor.png
Biologie antikey.png

Mathematical Model

Vanillin receptor.png

Simulation

Vanillin diffusion

Because VirA senses the vanillin concentration in the cytoplasm, it's important to estimate the diffusion of vanillin over the cell membrane. Also because vanillin is not actively removed from the extracellular medium, the rate of evaporation of vanillin is an important figure if we want to regulate the concentration of vanillin in the extracellular medium. A detailed analysis can be found in following document. vanillin_sensing

The most important figures are that the time to reach steady state between the concentration of the inter and extracellular concentration of vanillin in the order of 10 ms, the half-life through evaporation of vanillin in water is 20 hours.

An equivalent model (single cell) of vanillin in the aqueous medium and evaporation was conducted.

Equivalent model of vanillin

Following simulation shows the time-scale of evaporation of vanillin out of the lb(aqueous) medium, the slow evaporation rate of vanillin is not surprising considering its use in the perfume industries as an aroma in the ground note.

Evaporation rate of vanillin out of lb medium

If this evaporation rate would show to slow, several active techniques exists to speed the process of removing the vanillin from the extracellular medium.