Jamboree/Project Abstract/Team Abstracts

From 2009.igem.org

Revision as of 21:11, 21 September 2009 by Timvos87 (Talk | contribs)

Team TU Delft: Bacterial Relay Race

In our project, we aim at creating a cell-to-cell communication system that allows the propagation of a set of instructions coded on a plasmid, and not just binary information as in quorum sensing. To achieve this goal, we have designed a communication system based on three different modules: a conjugation system, a time-delay genetic circuit, and a self-destructive plasmid.
Cell-to-cell communication systems are important because, in most synthetic biology applications, the desired tasks are generally accomplished by a population of cells, rather than by a single cell. The proposed communication system could be used for creating a distributed sensors network, or it could help to better understand and possibly reduce antibiotic resistance in bacteria.
Furthermore, we have conducted a survey to study the perception on synthetic biology and related ethical issues, among iGEM participants, students and supervisors. We have focused on the top-down and bottom-up approaches as applied to biology.

Team Groningen: Heavy metal scavengers with a vertical gas drive

Heavy metal pollution of water and sediment endangers human health and the environment. To battle this problem, a purification strategy was developed in which arsenic, zinc or copper are removed from metal-polluted water and sediment. In this approach Escherichia coli bacteria accumulate metal ions from solutions, after which they produce gas vesicles and start floating. This biological device encompasses two integrated systems: one for metal accumulation, the other for metal-induced buoyancy. The uptake and storage system consists of a metal transporter and metallothioneins (metal binding proteins). The buoyancy system is made up of a metal-induced promoter upstream of a gas vesicle gene cluster. This device can be changed to scavenge for any compound by altering the accumulation and the induction modules. The combination of both systems enables the efficient decontamination of polluted water and sediment in a biological manner.