Team:BIOTEC Dresden/Results Vesicles

From 2009.igem.org

(Difference between revisions)
Line 1: Line 1:
{{:Team:BIOTEC_Dresden/NewTemplate}}
{{:Team:BIOTEC_Dresden/NewTemplate}}
=== Vesicle formation in Microfluidic Chamber ===
=== Vesicle formation in Microfluidic Chamber ===
 +
 +
 +
The video shows the formation of vesicles in a V-chamber. The surfactant Span 80 at a concentration (V/V) of 1% was dissolved in the oil phase. The flow rates used were different for every chamber used and are hence not transferable to other systems. Vesicle size varied with applied flow rates: increased flow rates of  Oil flows from left to right in the channel that appears colorless. Two channels that carry material in the aqueous phase meet (this area is not visible in the image) and lead downwards towards the oil channel. The vesicles created are lead towards a network of channels that break the vesicles into smaller vesicles and eventually into a grid that stores them.
 +
 +
<html>
 +
<object width="425" height="344"><param name="movie" value="http://www.youtube.com/v/iq1ZRdI3eto&hl=en&fs=1&"></param><param name="allowFullScreen" value="true"></param><param name="allowscriptaccess" value="always"></param><embed src="http://www.youtube.com/v/iq1ZRdI3eto&hl=en&fs=1&" type="application/x-shockwave-flash" allowscriptaccess="always" allowfullscreen="true" width="425" height="344"></embed></object>
 +
</html>
Line 9: Line 16:
| [[Image:vesicle_1.jpg|thumb|400|Vesicles are led into a grid by funnel shaped structures in the flow chamber (top). ]]
| [[Image:vesicle_1.jpg|thumb|400|Vesicles are led into a grid by funnel shaped structures in the flow chamber (top). ]]
|}
|}
-
 
-
The video shows first see the part of the chamber where aqueous and oil phases meet. Oil flows from left to right in the channel that appears colorless. Two channels that carry material in the aqueous phase meet (this area is not visible in the image) and lead downwards towards the oil channel. The vesicles created are lead towards a network of channels that break the vesicles into smaller vesicles and eventually into a grid that stores them.
 
-
 
-
<html>
 
-
<object width="425" height="344"><param name="movie" value="http://www.youtube.com/v/iq1ZRdI3eto&hl=en&fs=1&"></param><param name="allowFullScreen" value="true"></param><param name="allowscriptaccess" value="always"></param><embed src="http://www.youtube.com/v/iq1ZRdI3eto&hl=en&fs=1&" type="application/x-shockwave-flash" allowscriptaccess="always" allowfullscreen="true" width="425" height="344"></embed></object>
 
-
</html>
 
{{:Team:BIOTEC_Dresden/NewTemplateEnd}}
{{:Team:BIOTEC_Dresden/NewTemplateEnd}}

Revision as of 02:31, 22 October 2009

Vesicle formation in Microfluidic Chamber

The video shows the formation of vesicles in a V-chamber. The surfactant Span 80 at a concentration (V/V) of 1% was dissolved in the oil phase. The flow rates used were different for every chamber used and are hence not transferable to other systems. Vesicle size varied with applied flow rates: increased flow rates of Oil flows from left to right in the channel that appears colorless. Two channels that carry material in the aqueous phase meet (this area is not visible in the image) and lead downwards towards the oil channel. The vesicles created are lead towards a network of channels that break the vesicles into smaller vesicles and eventually into a grid that stores them.


A microfluidic chamber that created an intersection between aqueous and oil phases produced vesicles that were uniform in size and stable for up to 5 hours. The vesicles are stabilized by a surfactant, Span 80.


Vesicles are led into a grid by funnel shaped structures in the flow chamber (top).
Retrieved from "http://2009.igem.org/Team:BIOTEC_Dresden/Results_Vesicles"